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CryoDRGN-ET: deep reconstructing 
generative networks for visualizing  
dynamic biomolecules inside cells

Ramya Rangan1,7, Ryan Feathers1,7, Sagar Khavnekar2, Adam Lerer    3, 
Jake D. Johnston4,5, Ron Kelley6, Martin Obr    6, Abhay Kotecha    6  & 
Ellen D. Zhong    1 

Advances in cryo-electron tomography (cryo-ET) have produced new 
opportunities to visualize the structures of dynamic macromolecules 
in native cellular environments. While cryo-ET can reveal structures at 
molecular resolution, image processing algorithms remain a bottleneck 
in resolving the heterogeneity of biomolecular structures in situ. 
Here, we introduce cryoDRGN-ET for heterogeneous reconstruction 
of cryo-ET subtomograms. CryoDRGN-ET learns a deep generative 
model of three-dimensional density maps directly from subtomogram 
tilt-series images and can capture states diverse in both composition 
and conformation. We validate this approach by recovering the known 
translational states in Mycoplasma pneumoniae ribosomes in situ. We then 
perform cryo-ET on cryogenic focused ion beam–milled Saccharomyces 
cerevisiae cells. CryoDRGN-ET reveals the structural landscape of  
S. cerevisiae ribosomes during translation and captures continuous motions 
of fatty acid synthase complexes inside cells. This method is openly available 
in the cryoDRGN software.

Cryo-ET is an imaging technique that provides structural insights 
spanning cellular to molecular length scales1–3. By computationally 
combining a series of tilt images of intact cells or thinly milled lamellae, 
cryo-ET can visualize the architecture of whole cells in three dimen-
sions at nanometer resolution. Further computational processing of 
the resulting three-dimensional (3D) tomograms with algorithms for 
segmentation and subtomogram reconstruction can resolve struc-
tures at sub-nanometer resolution, providing detailed snapshots of 
macromolecular structures and their localization in native contexts4–13.

A major challenge in image processing workflows for cryo-ET is the 
analysis of structural heterogeneity within subtomogram data. Subto-
mogram reconstruction algorithms must cope with imaging attributes 
specific to cryo-ET such as the extremely low signal-to-noise ratio (SNR) 

in exposure-limited individual tilt images, as well as the inherent com-
plexity from variations in conformation and composition of biomo-
lecular complexes within cellular samples taken without purification. 
While some advanced methods for heterogeneity analysis have been 
proposed6,14–16, the majority of subtomogram processing workflows 
rely on 3D classification to cluster subtomograms into a few discrete 
conformational states. Although this approach has been successfully 
used to reveal distinct states of macromolecular machines in situ17–19, 
current processing workflows remain unwieldy, with many manual 
steps and substantial computational requirements. Furthermore, these 
methods are not well suited for modeling continuous heterogeneity 
and require specifying the number of expected states a priori, often 
additionally requiring user-provided masks to focus classification on 
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open-source software available in version 3.0 of the cryoDRGN software 
package (https://cryodrgn.cs.princeton.edu/).

Results
Heterogeneous subtomogram reconstruction with 
cryoDRGN-ET
CryoDRGN-ET is a generative neural network method for recon-
structing a distribution of density maps from cryo-ET subtomogram 
data. As in the cryoDRGN method20, cryoDRGN-ET uses a coordinate- 
based neural network to represent 3D density maps that is conditioned 
on a continuous latent variable z ∈ ℝN  for modeling heterogeneity. 
To train cryoDRGN-ET, we extend the standard cryo-EM image forma-
tion model to tomography (Methods). Unlike in SPA where a single 
projection image is captured for each particle, in tomography,  
multiple projections of the same particle are captured from  
different tilt angles (Fig. 1a). Instead of operating on 3D subtomo-
grams extracted for each particle, which can suffer from challenges 
due to the missing wedge and higher computational requirements, 
cryoDRGN-ET processes the series of tilt images for each particle, 
referred to as ‘subtilts’, an approach followed by other recent  
methods6,10,11,24. CryoDRGN-ET aggregates the different tilt images 
for each particle with a multi-view encoder that outputs a vector zi, 
also referred to as a latent embedding, representing the conforma-
tional state of particle i (Fig. 1b). Then, given this latent embedding 
zi, cryoDRGN-ET’s generative model outputs a 3D density map Vi. 
This map can then be rendered as two-dimensional (2D) projections 

regions with known variability. More fundamentally, 3D classification 
requires averaging subtomograms from thousands of particles to obtain 
well-resolved structures, leading to trade-offs between the number of 
states that can be reconstructed and the resolution of density maps of 
these states. While machine learning methods based on deep neural 
networks have shown recent successes in modeling structural vari-
ability in single-particle cryo-electron microscopy (cryo-EM)20–22, their 
potential has yet to be realized in modeling heterogeneous structures 
from the cellular milieu.

Here, we introduce cryoDRGN-ET for heterogeneous recon-
struction of cryo-ET data (Fig. 1). CryoDRGN-ET learns a deep gen-
erative model of 3D density maps directly from particle tilt images. 
Similar to the cryoDRGN method for single-particle analysis (SPA)20, 
cryoDRGN-ET’s generative model for structure is parameterized using 
a neural field23 that is able to capture diverse sources of heterogeneity, 
including compositional changes, continuous conformational dynam-
ics, and impurities and artifacts from imaging. Applied to a previously 
published in situ dataset of the bacterial ribosome, cryoDRGN-ET 
recapitulates the distribution of translational states in quantitative 
agreement with prior analyses17, while visualizing continuous motions 
and membrane-associated conformations in a single model. We then 
performed cryo-ET on cryogenic focused ion beam–milled lamellae of  
S. cerevisiae cells and used cryoDRGN-ET to reveal the structural land-
scape of the S. cerevisiae eukaryotic ribosome. Finally, we showcased 
cryoDRGN-ET by analyzing the structure and conformational hetero-
geneity of the S. cerevisiae fatty acid synthase (FAS). CryoDRGN-ET is 
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Fig. 1 | The cryoDRGN-ET method for heterogeneous reconstruction of cryo-
ET subtomograms. a, Overview of tomography data acquisition and selection of 
subtomograms, including a schematic showing the series of tilt images that are 
obtained for each subtomogram. b, CryoDRGN-ET architecture. Particle subtilt 
images are transformed into a latent embedding through a multi-view encoder. 
The decoder includes a multilayer perceptron (MLP) that can reconstruct density 
maps given a particle’s latent embedding. c, Density map generation. Once 
trained, particle latent embeddings can be visualized with UMAP and density 
maps can be generated via two approaches. First, density maps can be directly 
generated with the parameterized MLP given any latent embedding. For example, 

four density maps are generated from the colored points in the latent space,  
with density regions colored to show the ribosome’s large subunit (blue),  
SSU (yellow), and different binding factors. Second, density maps can be 
generated by a voxel-based homogeneous reconstruction from particles 
selected based on the latent representation. d, Analysis of cryoDRGN-ET’s 
generative model. Density maps can be systematically sampled from the latent 
representation (here we show k-means cluster centers, k = 100), and continuous 
trajectories between points in latent space can be explored. Density maps of 
representative states can be classified to further visualize the distributions  
of particle classes across the latent space.
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corresponding to each particle’s tilt images given the image  
pose and estimated contrast transfer function (CTF) parameters.  
We model high-frequency signal attenuation as a function of elec-
tron exposure dose in the CTF for each tilt image25. A maximum 
likelihood objective is used to compare the rendered 2D projec-
tions against the observed tilt images. We additionally implement 
computational enhancements in the cryoDRGN software for  
handling large subtomogram datasets containing millions of  
particle images (Methods).

Once training is complete, cryoDRGN-ET provides a per-particle 
estimate of the dataset’s heterogeneity that can be analyzed through 
multiple approaches (Fig. 1c,d). The distribution of latent embeddings 
of the particles in the dataset can be visualized in 2D, for example, with 
principal component analysis or uniform manifold approximation and 
projection (UMAP26; Fig. 1c). In cryoDRGN-ET’s neural representation 
of 3D density, a density map can also be generated from any point in 
the latent space (Fig. 1c) and visualized to interpret the latent space 
and explore the conformational distribution. To more systematically 
analyze the observed heterogeneity, a large number of representative 
density maps can be used to sort particles into distinct ‘classes’, and tra-
jectories can be generated by sampling maps along continuous paths in 
the latent space (Fig. 1d). Finally, observed states may be validated by 
selecting constituent particles in particle classes (‘ensemble analysis’, 
Fig. 1d) and performing a traditional homogeneous reconstruction 
using voxel-based backprojection, which we newly implement in the 
cryoDRGN software suite (Fig. 1c).

CryoDRGN-ET recovers bacterial ribosome translational 
states
To test cryoDRGN-ET’s subtomogram analysis, we applied it to a 
previously published in situ dataset of the Mycoplasma pneumoniae  
bacterial ribosome after chloramphenicol (Cm) treatment4, comparing 
against prior conventional 3D classification on this dataset17. Ribosome 
subtilts and their associated pose and CTF parameters were obtained 
from a 3.6 Å consensus refinement. We first assessed these particles’ 
quality by training cryoDRGN-ET on all 18,466 particles, identifying 
outliers and particles that produce poor ribosome density maps to 
exclude in further training runs (Extended Data Fig. 1). We additionally 
assessed the resolution of the reconstruction when varying the num-
ber of tilt images used per particle, finding no further improvement 
when using more than eight images per particle (Extended Data Fig. 2). 
For subsequent cryoDRGN-ET analysis for this dataset, we trained on 
the first ten tilts in the dose-symmetric tilt acquisition scheme for  
each particle.

A cryoDRGN-ET network trained on the cleaned set of 16,655 par-
ticles reconstructed density maps displaying known compositional 
and conformational heterogeneity in the bacterial ribosome, including 
varying tRNA occupancy at the A-P-E sites, the appearance of elon-
gation factors, subunit rotation and local motions (Fig. 2). Density 
maps from cryoDRGN-ET recapitulated the major translational states 
previously identified in this Cm-treated M. pneumoniae ribosome 
dataset17: the P state; EF-Tu-tRNA, P state; A, P state; and A*, P/E state 
(Fig. 2a). These states show density for tRNAs and elongation factor 
EF-Tu in the expected sites, with rotation of the small subunit (SSU) 
most visible in the A*, P/E state as expected17. We classified 100 repre-
sentative density maps across the latent space to assign particles into 
these four states, dividing the latent space into four distinct regions 
(Fig. 2b and Supplementary Videos 1 and 2). This classification enabled 
quantifying the relative occupancy of ribosomes in these four states, 
with most particles representing the A, P state and other minor state 
populations similar to those found previously by conventional 3D 
classification17 (Fig. 2c). These state distributions remained mostly 
consistent in earlier training epochs, with different latent variable 
dimensions, and when using input poses with small additional errors 
(Supplementary Figs. 1–3).

To validate cryoDRGN-ET density maps and our class assignments, 
we verified that we could reproduce the structures from homogene-
ous reconstruction of each state’s particles (Supplementary Fig. 4). 
In addition, these reconstructions confirmed the rotation of the SSU, 
with the subunit rotated in the A*, P/E state relative to the A, P state 
(Extended Data Fig. 3). We compared the estimated resolution from 
homogeneous reconstruction for each particle class to those found 
previously by conventional 3D classification17, finding similar relative 
resolution between states and higher resolution in three cases perhaps 
due to improved particle classification. Unlike the original analysis 
of this dataset, which relied on multiple rounds of 3D classification17, 
cryoDRGN-ET can recover all states in a single round of training without 
the use of masks to focus on regions of expected variability in the tRNA 
channel. Since the A, P state included the most particles, a homogene-
ous reconstruction of this state produced the highest resolution map, 
with a global estimated resolution of 3.8 Å (Fig. 2d).

Beyond variation in the tRNA channel and factor-binding sites, 
cryoDRGN-ET density maps exhibited local dynamics, additional pro-
tein factor variability and larger-scale background variation (Supple-
mentary Video 3). For instance, some cryoDRGN-ET maps showed the 
L1 stalk in the open state, while others included the closed state, with 
L1 stalk closed conformations overlapping with the A*, P/E state and 
partially with the A, P state (Fig. 2e). We validated the observed L1 stalk 
conformations with a conventional homogeneous reconstruction from 
each conformation’s particles (Supplementary Fig. 5). Additionally, 
some cryoDRGN-ET maps showed density for the N-terminal domain 
(NTD) of the L7/L12 protein (Extended Data Fig. 4a,b), which is often 
challenging to resolve on ribosomes with SPA27. Finally, cryoDRGN-ET 
density maps exhibited larger-scale background variation when using 
all 41 tilts per particle, showing density for ribosomes bound to the cell 
membrane in the expected orientation (Extended Data Fig. 4a,c)28, 
along with density for neighboring ribosomes in polysomes, also in 
a canonical orientation (Extended Data Fig. 4a,d)29. We expect that 
analysis of background variation will be further enhanced when train-
ing cryoDRGN-ET on particle sets with larger box sizes that include 
more surrounding context.

The native structural landscape of the S. cerevisiae ribosome
We further showcase cryoDRGN-ET by analyzing a large cryo-ET dataset 
of the S. cerevisiae eukaryotic ribosome using tomograms collected 
from lamellae that were milled with cryogenic plasma focused ion beam 
milling (cryo-PFIB). With cryoDRGN-ET, we analyzed heterogeneity in 
the S. cerevisiae ribosome from in situ cryo-ET, recapitulating known 
translational states and factor-binding events along with expected 
continuous conformational motions and spatial background vari-
ability. Since we again found that using a subset of tilt images enables 
high-resolution reconstructions (Extended Data Fig. 5a,b), we carried 
out all training runs using ten tilt images per particle for enhanced 
computational efficiency on this larger dataset of 119,031 particles. We 
began with a cryoDRGN-ET training run on the complete particle set, 
finding that the UMAP latent space representation separated particles 
into three classes, corresponding to rotated SSU, non-rotated SSU and 
a group of outlier particles (Fig. 3a). A homogeneous reconstruction of 
this outlier group yielded a very noisy map resembling broken particles 
(Fig. 3a), and removing this group of 25,750 particles did not impact 
the resolution of the consensus reconstruction (Extended Data Fig. 5c). 
Homogeneous reconstruction of the two remaining particle classes 
verified that they corresponded to the SSU rotated and non-rotated 
states (overlaid in Fig. 3a), and a subsequent cryoDRGN-ET training run 
excluding outlier particles reproduced the separation of SSU rotated 
and SSU non-rotated particles (Fig. 3a). To focus model capacity on fur-
ther delineating translational states, we trained separate cryoDRGN-ET 
models on the SSU non-rotated and SSU rotated particles (Fig. 3b).

Density maps sampled from cryoDRGN-ET training on SSU 
non-rotated and rotated particles could be classified primarily into four 
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translational states (Fig. 3b), providing in situ evidence for these func-
tional states and their relative populations in S. cerevisiae ribosomes 
(Supplementary Video 4). Most representative maps from the SSU 
non-rotated particles corresponded to the eEF1A, A/T, P state, a stage 
before peptidyl transfer. Indeed, the eEF1A, A/T, P state was the most 
populated across this S. cerevisiae in situ ribosome dataset (Extended 
Data Fig. 6a), agreeing with recent characterization of eukaryotic 
ribosomes in situ from Dictyostelium discoideum and human cells18,19. 
The conformation of eEF1A and the A/T tRNA in this state is aligned 
with codon sampling rather than codon recognition (Extended Data 
Fig. 6b)19. Next, we noted a class of representative maps from the SSU 
rotated particle set corresponding to the A, P state, accounting for the 
second largest particle population (Fig. 3b and Extended Data Fig. 6a). 
Finally, from the SSU rotated particle set, we noted representative maps 
corresponding to two post-translocation states: the eEF2, P, E state 
and the eEF2, P state. We validated particle classification into these 
four states through homogeneous reconstructions, finding that the 
resulting reconstruction for each class reproduced expected tRNA and 
factor density (Fig. 3c, Extended Data Fig. 6 and Supplementary Fig. 6). 
When fitting atomic models into these reconstructions, we observed 

expected SSU motion across these states, with SSU rolling and rotation 
visible in the A, P state and SSU rotation visible in the post-translocation 
states (Extended Data Fig. 7). Because the eEF1A, A/T, P state and  
the A, P state had the highest particle populations, reconstructions 
from these states produced the highest resolution maps at a global 
estimated resolution of 4.4 Å and 4.7 Å, respectively (Fig. 3d, Extended 
Data Fig. 6 and Supplementary Fig. 6).

As in the case of the bacterial ribosome, cryoDRGN-ET was able to 
further uncover larger-scale background variation and compositional 
heterogeneity for additional protein factors beyond these canonical 
translational states (Supplementary Video 5). For instance, repre-
sentative density maps from cryoDRGN-ET included membrane-bound 
ribosomes (Fig. 3e) and polysomes (Extended Data Fig. 8), with poly-
some density visible in maps sampled from both SSU rotated and 
non-rotated states. While in the case of the M. pneumoniae ribosome 
using additional tilt images enabled better visualization of background 
heterogeneity (Extended Data Fig. 4), in this case additional tilts did 
not improve resolved polysomes (Supplementary Fig. 7). In addition 
to membrane-bound ribosomes and polysomes, we found that some 
representative maps included density for the initiation factor eIF5A 
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c, Quantification of particle populations in each observed translational state, 
compared between cryoDRGN-ET and prior conventional 3D classification17. 
d, High-resolution reconstruction from voxel-based backprojection in 
cryoDRGN-ET for particles assigned to the A, P state. e, Representative maps 
from cryoDRGN-ET displaying the L1 stalk open (left) and closed (middle) 
conformations. A kernel density estimate plot displaying the distribution of the 
two L1 stalk conformations in the latent space (right).
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(Extended Data Fig. 8a)30, and other maps included density for the 
uL10(P1-P2)2 stalk (Extended Data Fig. 8b)31. Finally, we noted that 
some representative maps showed the presence of fungal-specific 
elongation factor eEF3 (Extended Data Fig. 8b). eEF3 was present only 
in representative density maps sampled from SSU non-rotated particles 

in the eEF1A, A/T, P state, aligning with prior suggestions that eEF3 
binding is stabilized in non-rotated states32. Density for these additional 
factors was validated with homogeneous reconstructions of identified 
particles (Supplementary Figs. 8–10), for instance, with density for 
eIF5A and eEF3 agreeing with prior atomic models for these factors 
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that were determined from purified samples (Fig. 3c). Through these 
analyses, we show that cryoDRGN-ET can model numerous sources of 
heterogeneity in S. cerevisiae ribosomes, providing a new analytical 
approach for interrogating structural distributions in situ.

In situ structure of the S. cerevisiae FAS
As further demonstration of using cryoDRGN-ET for resolving struc-
tural heterogeneity in situ, we next applied cryoDRGN-ET to the  
S. cerevisiae FAS. The S. cerevisiae FAS is a 2.6-MDa complex consist-
ing of six copies of α and β subunits that form a large barrel-shaped 

structure33–35. To determine the structure of S. cerevisiae FAS in situ, 
particles were selected from the same cryo-PFIB tomography dataset 
used to study S. cerevisiae ribosomes. After an initial round of template 
matching and subtomogram averaging, we obtained a 14.3 Å consensus 
refinement from which 1,269,832 subtilts for 33,492 particles were 
exported along with corresponding refined poses and CTF parameters 
for cryoDRGN-ET analysis.

We first trained a cryoDRGN-ET model on the full dataset of FAS 
particles. When inspecting density maps sampled from the resulting 
latent space, we found that cryoDRGN-ET identified a cluster of 5,239 
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particles resembling FAS (Fig. 4a). This separation of high-quality par-
ticles from noisy particles was evident even at early epochs of training 
(Fig. 4b). Homogeneous reconstructions with voxel-based backprojec-
tion produced maps of improved quality when using only the 5,239 
filtered particles based on half-map Fourier shell correlation (FSC; 
Fig. 4d). To further validate this particle selection, we carried out 3D 
classification of the full particle set in RELION and isolated particles 
belonging to the well-resolved class (Extended Data Fig. 9a), finding 
that cryoDRGN-ET and RELION obtained a highly overlapping set of 
filtered particles (Fig. 4b). Next, to improve the reconstruction of the 
FAS map from selected particles, we refined poses in RELION for the 
filtered particle set from cryoDRGN-ET. Whereas an equivalent refine-
ment of the unselected particles produced a noisy map (Fig. 4c,d), the 
refinement of selected particles showed improved global estimated 
resolution (gold-standard Fourier shell correlation (GSFSC) of 8.8 Å; 
Fig. 4c,d). We then carried out a D3 symmetry refinement of selected 
particles, further improving the estimated resolution (GSFSC of 6.8 Å;  
Fig. 4c,d).

The refined map for S. cerevisiae FAS in situ showed the density 
for key structural features of the complex, including the equatorial 
wheel created by the α subunits and the two domes made up of the β 
subunits33–35. Atomic models solved for FAS in a previously identified 
non-rotated state fit well with this map (Fig. 4c and Extended Data 
Fig. 9b)36. We observed low-resolution density in this map for the flex-
ible acyl carrier protein, which carries substrates between active sites 
in FAS (Extended Data Fig. 9b). Here, acyl carrier protein is found by the 
FAS ketosynthase domain, taking the same conformation seen previ-
ously in yeast FAS structures in the non-rotated state35–37.

We next applied cryoDRGN-ET on the selected subset of 
high-quality FAS particles to explore any further heterogeneity. When 
sampling density maps along the first principal component of the 
resulting latent embeddings, we observed conformational dynamics 
in the two domes of FAS, including rotation of the β subunits (Fig. 4e,f) 
and compaction of the domes (Supplementary Video 6). These motions 
align with previously observed rotated and non-rotated FAS struc-
tures36 and provide a view of intermediate conformations between 
these states. Atomic models for the rotated and non-rotated states 
of FAS can be docked into maps sampled at extreme values along the 
first principal component axes of the latent embeddings (Extended 
Data Fig. 9c). Through analysis of this complex, we demonstrate that 
cryoDRGN-ET can isolate high-quality particles and resolve conforma-
tional heterogeneity for structures beyond ribosomes.

Visualizing molecular heterogeneity in cellular contexts
Cryo-ET provides an opportunity to visualize biomolecular complexes 
in their native environments. Since we processed datasets for the  
S. cerevisiae ribosome and FAS from the same tomograms, we were 
able to observe their relative positioning in situ by locating picked 
particles in tomograms (Fig. 5 and Supplementary Video 7). We focused 
on visualizing high-quality particles for both cases by using particle 
selections from cryoDRGN-ET filtering, selecting the 93,281 SSU rotated 
and non-rotated particles for the S. cerevisiae ribosome (Fig. 3a) and 
the 5,239 higher-quality particles from the FAS dataset (Fig. 4a). The 
resulting tomogram visualizations suggested that these filtered particle 
sets mostly avoided spurious picks, with particles remaining within 
the plasma membranes (Fig. 5a,b) and outside mitochondria (Fig. 5b). 
Ribosomes and FAS complexes are evenly distributed through the 
cytosol without apparent correlation between their spatial positions 
and orientations. When visualizing the membrane particle class corre-
sponding to the representative volume sampled in Fig. 3e, we observed 
expected positioning adjacent to membranes, validating particle class 
selections from cryoDRGN-ET. By visualizing particle classes and con-
tinuous variation identified by cryoDRGN-ET on tomograms, it is thus 
possible to use cryoDRGN-ET to reveal spatial relationships between 
macromolecules’ heterogeneity and their cellular environment.

Comparing methods for in situ heterogeneity analysis
We compared cryoDRGN-ET to more conventional approaches for 3D 
classification of subtomograms. As described above, 3D classification 
with RELION38 reproduced selections of high-quality particles from 
cryoDRGN-ET (Fig. 4b and Extended Data Fig. 9a). While 3D classifica-
tion was originally used to resolve the four major tRNA translational 
states along with other heterogeneity like opening of the L1 stalk and 
SSU rotation on the M. pneumoniae ribosome dataset17, the analysis 
relied on multiple rounds of 3D classification and the use of masks 
around the tRNA channel and factor-binding sites. When perform-
ing 3D classification with RELION using a body mask around the full 
ribosome, all classes produced structures in the A, P state, the most 
abundant translational state (Supplementary Fig. 11a,b). In contrast, 
cryoDRGN-ET recovered multiple translational states in a single round 
of training without the use of masks to focus on specific regions with 
expected variability.

We additionally compared cryoDRGN-ET to a similar neural net-
work architecture, tomoDRGN, that has been proposed to model 
heterogeneity in cryo-ET subtomograms39. This approach similarly 

a b

Fig. 5 | Visualization of two representative S. cerevisiae tomograms. a,b, Ribosome particles are shown in green, FAS particles in purple and membrane-bound 
ribosomes in pink. Membrane segmentation is shown in blue, highlighting plasma membranes and endoplasmic reticulum (a and b) and mitochondria (b).  
Scale bar, 50 nm.
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extends the cryoDRGN framework and thus leverages the same expres-
sive neural field representation of density maps. However, tomoDRGN 
accounts for electron dose exposure using a weighting factor rather 
than a correction in its training objective and differs in its subtilt 
encoding scheme. When using tomoDRGN with default parameters, 
we did not observe tRNA or elongation factor heterogeneity in the  
M. pneumoniae ribosome, with all resulting density maps in the A, 
P state (Extended Data Fig. 10a). Additionally, tomoDRGN trained 
with default parameters on the S. cerevisiae FAS dataset shows artifac-
tual isosurface variation rather than conformational heterogeneity 
between maps (Extended Data Fig. 10b). It is possible that alternate 
parameterizations of this network may exhibit more heterogeneity 
in these cases. Beyond performance on these datasets, we note that 
cryoDRGN-ET is integrated in the cryoDRGN software and thus inherits 
its features and improvements such as additional utilities for valida-
tion using voxel-based backprojection and efficient dataset loading to 
enable processing large datasets (Methods).

Discussion
In summary, with cryoDRGN-ET we provide new capabilities for ana-
lyzing heterogeneity within cryo-ET subtomograms. CryoDRGN-ET 
leverages the expressive representation power of deep neural networks 
to generate density maps with compositional and conformational vari-
ation from cryo-ET subtomograms. When applied to in situ datasets, 
we first characterized translational states of the bacterial ribosome in 
quantitative agreement with previous results17. We then newly visual-
ized the native translational states of the S. cerevisiae ribosome, con-
firming the structural characterization from purified systems. Finally, 
we used cryoDRGN-ET to characterize the structure and heterogeneity 
of the S. cerevisiae FAS complex in situ. Notably, these S. cerevisiae 
structures were determined from the same cryo-ET dataset, showcas-
ing a natural advantage of analyzing intact cells.

Instead of processing 3D subvolumes, cryoDRGN-ET operates on 
2D tilt series of cropped particles (that is, subtilts), a choice also made 
by other recent approaches6,10,11,24. Although averaging subtilt-series 
data enables more efficient computation, these subtilts include back-
ground from the cellular environment. This background could hinder 
cryoDRGN-ET’s performance by reducing the SNR. However, with a 
higher number of tilts and larger box sizes, we expect that cryoDRGN-ET 
is more likely to resolve some heterogeneity in neighboring particles 
in the cellular environment. Interestingly, in the examples here, we 
resolve structural heterogeneity using only a small subset of the col-
lected tilt images (only the ten highest signal images). This aligns with 
prior observations that in some cases, it is possible to discard later tilt 
images without losing useful signal40,41. However, we do not assess the 
necessity of these additional tilts in the processing steps upstream of 
cryoDRGN-ET analysis.

We explored multiple hyperparameter choices for cryoDRGN-ET 
training, for instance, varying training lengths, latent space dimension 
and the number of tilt images used. We expect that the best choices for 
these parameters will vary between datasets depending on the number 
of particles, SNR in tilt-series images, the degree of heterogeneity and 
other factors. For instance, whereas using more tilt images per particle 
improved resolution of polysomes and membrane density surrounding 
the M. pneumoniae ribosome, we did not see this improvement when 
analyzing the S. cerevisiae ribosome, perhaps due to the larger number 
of S. cerevisiae ribosome particles.

Notably, cryoDRGN-ET yields a distinct estimate of structural 
heterogeneity for each particle (that is, a conformational state zi and 
associated density map Vi) without focused masks on smaller domains 
to guide the search for heterogeneity during training. The relatively 
unbiased, per-particle heterogeneity estimate from cryoDRGN-ET can 
enable the joint analysis of inter-particle and intra-particle variation, 
potentially disentangling complex relationships between particles’ 
conformational states, binding factor composition and spatial context. 

As an example, our analysis of compositional and conformational 
heterogeneity in the M. pneumoniae ribosome demonstrated that the 
opening of the L1 stalk correlated with factors present in the ribosome’s 
tRNA channel.

We finally note that cryoDRGN-ET relies on image poses obtained 
from an upstream consensus refinement. While cryoDRGN-ET was 
robust to minor errors in pose estimation for individual particles, we 
found that larger pose deviations can limit resolved heterogeneity. 
Combining particle selections from cryoDRGN-ET with pose refine-
ment in RELION could enable higher-resolution structure determina-
tion, as in the case of the FAS structure. In the future, the development 
of cryoDRGN-ET for subtomogram analysis can be coupled with recent 
developments in neural ab initio reconstruction42,43 to avoid reliance on 
poses from consensus refinements. Such advances could enable studies 
of structural heterogeneity in more complex systems, expanding our 
understanding of dynamic macromolecular machinery within cells.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
CryoDRGN-ET generative model
CryoDRGN-ET performs heterogeneous reconstruction using a neural 
network representation for cryo-EM structures. In particular, the central 
task in cryoDRGN-ET is to learn a function 𝒱𝒱 𝒱 ℝ3+N → ℝ describing an  
N dimensional continuous distribution over 3D cryo-EM density maps. 
We use a generic latent variable z ∈ ℝN  to model the conformational 
distribution and parameterize the generative model with a coordinate- 
based neural network, Vθ(γ(k), z), where θ are parameters of a multi-layer 
perceptron (MLP). In cryoDRGN-ET, the density map is specified in the 
Fourier (or the closely related Hartley) domain; thus, k ∈ ℝ3 are Cartesian 
coordinates representing Fourier space wavevectors. Similar to recent 
development in neural fields for modeling 3D signals23, input coordi-
nates k are expanded in a sinusoidal basis; instead of geometrically- 
spaced axis-aligned frequencies in earlier versions of cryoDRGN20, we 
use frequencies sampled from a Gaussian distribution:

γ(k) = [cos(2πBk), sin(2πBk)]

where entries of B ∈ ℝM×3 are sampled from 𝒩𝒩(0,σ2) and M is a hyper-
parameter. Without loss of generality, we model density maps from  
Vθ on the domain [−0.5, 0.5]3 in our coordinate-based neural network. 
By default, we set σ = 0.5 for our Fourier featurization and set M to be 
the box size of the training images, that is, the number of pixels along 
each dimension of the image.

The generation of cryo-ET subtomogram tilt images follows the 
standard cryo-EM image formation model with modifications for 
tomography. We note that many existing methods for subtomogram 
averaging align and average many subtomogram volumes of the same 
particle. Alternatively, some newer approaches perform subtomo-
gram averaging by directly aligning and averaging the 2D tilt images 
rather than the subvolumes4,5, which avoids artifacts due to the missing 
Fourier space wedge in individual subtomograms and can be more 
memory efficient. In cryoDRGN-ET, we treat the subtomograms as 
cropped 2D tilt series. Thus, the image formation of N tilted images 
X (0,…,N)
i  for particle i and tilt j closely follows that from single-particle 

cryo-EM:

X ( j)
i = CTFi, jTti, j Si, j[Vθ(⋅, zi)] + ϵ

where CTFi,j applies the CTF, ϵ is additive Gaussian white noise, Tti, j  
applies a phase shift corresponding to translation by t ∈ ℝ2 in real space, 
and S applies a 2D slicing operator at orientation R ∈ SO(3) on a volume 
V 𝒱 ℝ3 → ℝ:

Si[V ] 𝒱 (kx, ky) ↦ V (Ri ⋅ (kx, ky,0)
T)

Thus, to generate an image with our coordinate-based neural net-
work, we first obtain oriented 3D coordinates of the 2D central slice 
corresponding to each pixel from the image, taking a grid of 3D pixel 
coordinates originally spanning [−0.5, 0.5]2 on the x–y plane and rotat-
ing by the pose of each tilt image. Then given these coordinates and 
the latent embedding predicted for the particle, the volume decoder 
Vθ can render a 2D slice in the Fourier (or Hartley) domain. The phase 
shift corresponding to the 2D real-space translation is applied before 
multiplying by the CTF.

To account for accumulated radiation damage in tomography, we 
additionally extend the CTF to account for lower SNR in tilts collected 
at later time points and higher angles. First, we include an electron dose 
exposure correction to account for frequency-dependent signal atten-
uation in later tilt images, as the sample has been exposed to higher 
electron doses when these tilts are collected. As described previously41, 
for each tilt image we compute this dose exposure correction as e−

N
Ne , 

where N is the cumulative dose accrued in the sample when this tilt 
image was collected, and Ne is the dose at which the SNR is 1/e of its 

starting value. Based on previous calibration41, Ne is computed as 
2.81 + 0.245e−1.665s, dependent on spatial frequency s. These dose expo-
sure corrections are then masked to 0 for frequencies where the cumu-
lative dose exceeds the frequency-dependent optimal exposure value 
(2.51284Ne)41. We multiply the CTF by these dose exposure corrections 
during training. Additionally, since sample thickness effectively 
increases at higher tilt angles leading to decreasing SNR for these tilts, 
we further multiply the CTF by the cosine of the tilt angle44. Our current 
implementation assumes that data are collected with a dose-symmetric 
tilt scheme40.

CryoDRGN-ET training system
The overall cryoDRGN-ET architecture consists of an image encoder–
volume decoder based on the variational autoencoder45. The above 
coordinate-based neural network Vθ serves as the probabilistic decoder. 
The image encoder, qϕ, embeds cryo-EM image(s) associated with each 
particle into a lower-dimensional latent representation. In cryoDRGN 
for SPA, an MLP embeds a single image into an N-dimensional latent 
vector. In cryoDRGN-ET for tilt-series data, the encoder aggregates 
multiple images of each particle from the tilt series into a single latent 
vector. The encoder parameterizes a diagonal Gaussian approximate 
posterior over the latent variable z, which we sample from during 
training, but take the mean value during inference. To embed a series 
of tilt images, the encoder is split into two MLPs, where the first learns 
an intermediate embedding of each image, and the second maps the 
concatenation of the embeddings to the latent space. When experi-
menting with the number of tilt images that are needed for representa-
tion learning and reconstruction, tilt images are ordered by exposure 
so that the highest signal images are always included.

The training objective is based on the standard variational autoen-
coder objective consisting of a reconstruction error as the squared 
error between the observed image and a rendered slice from the model 
and a weighted regularization term on the predicted latent represen-
tation as the Kullback–Leibler divergence between the variational 
posterior and a standard normal prior on z. Models are optimized 
with stochastic gradient descent in minibatches of tilt images from 
eight particles using the Adam optimizer46 with a learning rate of 
0.0001. By default, the encoder and decoder MLPs have three hidden  
layers of width 1,024 and ReLU activations. For the multi-view image 
encoder, the intermediate embedding dimension for tilt images is 
64 by default. We used an eight-dimensional latent variable in all  
experiments. We used a constant weighting factor β of 0.025 on the 
Kullback–Leibler divergence term. For a summary of training and 
architecture hyperparameters and runtimes in all computational 
experiments, see Supplementary Table 2.

Computational enhancements in cryoDRGN-ET
Starting in cryoDRGN software version 3.0, we implemented new data-
set loading for memory-efficient training that can scale up to large 
multi-million-image datasets. Cryo-ET datasets often consist of millions 
of tilt-series images, which are too large to fit in system memory. As min-
ibatch stochastic gradient descent requires random subsets of particle 
images, cryoDRGN operates most efficiently when the entire dataset 
can be loaded into memory. Loading batches of images from disk in a 
random order induces IO bottlenecks since non-sequential reads from 
(non-SSD) disk typically have overheads on the order of 10 ms per read. 
This would impose a minimum epoch time of 4 × 106 × 10 × 10−3 = 11 h 
for a 4 million-image dataset.

In version 3.0, we introduce an in-memory ‘shuffle buffer’. The 
data loader fills this buffer with buffer_size elements, and then at each 
batch samples batch_size elements from the buffer, replacing them 
with a random contiguous chunk from disk. We typically use a buffer 
size of 32,000 images. This approach (a) avoids loading the full dataset 
to memory, (b) loads data in contiguous chunks, reducing filesystem 
overhead, and (c) achieves good shuffling of the data into batches.  
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The shuffling approach is similar to the one implemented in 
TensorFlow47.

For a dataset of 4.4 million 128 × 128 images, the epoch time on 
four A100 GPUs was 45 min using either an in-memory dataset or 
shuffle-buffer loading from disk, compared to an epoch time of over 
4 h with naively loading images from disk in a random order.

Voxel-based homogeneous reconstruction
To enable validation of particle selections, we implemented conven-
tional voxel-based backprojection to reconstruct density maps given 
particles’ tilt images and poses. We populate volume slices in Fourier 
space with the Fourier transform of each image based on its pose, apply-
ing the CTF using the Wiener filter. The 3D reconstruction is computed 
from the backprojected slices as previously described in41,48 as

FW(k) =
∑N

i=1CTFi(k)Fi(k)

∑N
i=1 CTFi(k)

2 + λk

The optimal value of λk is 1/SNR(k), which can be estimated from 
the data48. However, we found that this led to over-regularization in the 
absence of solvent masking, and we achieved acceptable results with a 
constant regularization across frequencies equal to the average of the 
unregularized denominator across voxels

λk = 𝔼𝔼k′ [
N
∑
i=1

CTFi(k′)
2] .

As with cryoDRGN-ET training, we apply dose exposure and 
tilt angle corrections to the CTF when carrying out voxel-based 
backprojection.

FSC calculation
To calculate FSC curves49 between half-maps, we use a custom script 
implemented in the cryoDRGN-ET software, with backprojected 
maps from two random halves of the dataset. Before calculating FSC 
curves, we apply soft real-space masks that were obtained as previ-
ously described20. In particular, masks are defined by first threshold-
ing the full dataset’s consensus density map at half of the 99.99th 
percentile density value. The mask is then dilated by 25 Å from the 
original boundary, and a soft cosine edge is used to taper the mask to 
0 at 15 Å from the dilated boundary. To ensure that these soft masks 
did not lead to artefacts, we computed corrected FSC curves using 
maps with high-resolution noise substitution50 for the curves shown 
in Extended Data Fig. 5, following the approach used in RELION38 and 
cryoSPARC51. Phase-randomization is carried out at frequencies above 
80% of the 0.143 threshold value38. We found that FSC curves corrected 
with high-resolution noise substitution were nearly identical to uncor-
rected curves when using these soft masks; therefore, we show the 
original FSC curves throughout the paper.

Bacterial ribosome dataset preprocessing (EMPIAR-10499)
Raw tilt movies were processed in Warp4, where motion correction 
and patch CTF estimation were performed. The tilt-series stack was 
generated from Warp and the tilt series were aligned using AreTomo52. 
The tilt-series CTFs were estimated in Warp and tomograms were 
reconstructed in Warp at a pixel size of 10 Å, where the tomograms were 
denoised to enhance the contrast for particle picking. Nine denoised 
tomograms were manually picked in crYOLO and used to train a crYOLO 
model53. In total, an initial 32,253 particle locations were found, and the 
subtomograms were extracted at a pixel size 10 Å with a box size of 64 
pixels. Approximately 500 subtomograms were extracted at 10 Å, and 
an initial model was generated using the VDAM algorithm in RELION 
(v.4.0)5. Multiple rounds of 3D classification were performed using the 
generated initial model to remove obvious bad particles, filtering the 

dataset to 25,102 particles. These subtomograms were then extracted 
in Warp at a pixel size of 5 Å with a box size of 128 pixels. One more 
round of 3D classification was performed, where 18,326 subtomograms 
were selected and subjected to an initial alignment in RELION 4.0 
3D-autorefine with a mask surrounding the large and small subunits. 
These subtomograms were then extracted in Warp at 1.705 Å, with a 
box size of 294, where multi-particle refinement was performed in M4 
with a binary mask encompassing the large and small subunits of the 
ribosome. Global movement and rotation with a 5 × 5 × 41 image-space 
warping grid, a 8 × 8 × 2 × 10 volume-space warping grid and particle 
pose trajectories with three temporal sampling points were refined 
with five iterations. Starting at the third iteration, CTF parameters 
were also refined, and at iteration 4, reference-based tilt-movie align-
ment was performed in M. This resulted in a 3.6 Å reconstruction of the  
M. pneumoniae 70S ribosome.

Bacterial ribosome cryoDRGN-ET analysis
Particle filtering. In the initial analysis of this dataset, a standard 
single-particle cryoDRGN model (software version 2.3.0) was trained 
on the 18,655 0-degree tilt images (D = 128, 3.9 Å/pix)20. The encoder and 
decoder architectures had three hidden layers of width 256 (denoted 
256 × 3), and the latent variable dimension was 8. The model was trained 
for 50 epochs across four A100 GPUs, taking 13 min in total. Once 
trained, cryoDRGN’s analysis pipeline (‘cryodrgn analyze’) was used 
to visualize the latent space and produce representative density maps. 
Outliers were removed using cryoDRGN’s interactive lasso tool on the 
UMAP visualization of the latent embeddings, leading to a filtered data-
set of 16,655 particles. A consensus refinement of the filtered dataset 
yielded the same global resolution map.

Reconstruction with varying number of tilts. We carried out separate 
voxel-based backprojections for the filtered dataset of 16,655 particles 
when using 1, 2, 5, 8, 10, 16, 32 and 41 tilts per particle. When using a sub-
set of tilts, tilts were chosen to be those with the lowest dose exposure 
(collected earliest in the tilt series). Local resolution estimates were 
performed in RELION (v4.0)54.

CryoDRGN-ET training. A cryoDRGN-ET model was trained on the  
filtered dataset of 16,655 particles for 50 epochs taking 3 h and 35 min on 
one GPU, with the top ten tilts used during training (D = 128, 3.9 Å/pix).  
The encoder and decoder architectures were 1,024 × 3, and the latent 
variable dimension was 8. We additionally trained a cryoDRGN-ET model 
with all 41 tilts per particle used during training (D = 128, 3.9 Å/pix)  
taking 12 h and 55 min on one GPU, using the same filtered particle set 
and architecture settings. To explore the effects of various hyperpa-
rameters on training, we additionally trained cryoDRGN-ET models 
with latent variable dimensions 2, 4 and 16, and we further trained 
cryoDRGN-ET models with encoder and decoder architectures 256 × 3 
and 512 × 3.

CryoDRGN-ET ensemble analysis. After cryoDRGN-ET training, the 
distribution of structures from each training run was systematically 
sampled by using the ‘cryodrgn analyze’ pipeline with k = 100, where 
100 representative density maps are generated at k-means cluster 
centers of the latent embeddings as described previously20. These 100 
density maps were then manually classified into four states based on 
tRNA and elongation factor occupancy. As each of these 100 maps is 
representative of a cluster of particles, we assign the particles in each 
k-means cluster to the same class as its k-means cluster center. Addi-
tionally, all 100 density maps were classified into either L1 open or L1 
closed conformations. A representative structure of each state was 
manually selected for visualization in Fig. 2. Additional representative 
density maps with membrane-bound ribosomes, polysomes and the 
NTD of L7/L12 visible were selected from the 100 representative density 
maps for the 41-tilt training run (Extended Data Fig. 4).
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High-resolution reconstruction and validation. To validate each 
state, the particles corresponding to each selected cluster from 
k-means clustering were combined. We then backprojected the tilt 
images from the high-resolution dataset (D = 294, 1.7 Å/pix) using 
‘cryodrgn backproject_voxel’. FSC curves between half-maps were 
obtained as described above to assess resolution. High-resolution 
backprojections were low-pass filtered to the resolution from FSC 
curves for visualization.

Convergence analysis. We evaluated the convergence of cryoDRGN-ET 
training across 50 epochs by monitoring the distribution of states and 
inspecting the quality of sampled volumes from different training 
epochs. For epochs 20, 30, 40 and 50, we independently classified 
100 representative density maps into each of the four translational 
states. We observed a consistent distribution of states after 30 epochs 
of training (Supplementary Fig. 1). Sampled volumes at 20, 30, 40 and 
50 epochs showed visibly similar resolution and included density 
for key factors (for example, A, P tRNA). To assess map quality, we 
computed map-to-model FSC curves between sampled volumes from 
each epoch of training and a previously determined in situ model of the  
A, P state (PDB 7PHB)17. Compared to epochs 10–20, sampled maps in 
the A, P state from epochs 30–50 were more distant from this previously 
solved structure, perhaps due to overfitting to noise in the dataset or 
additional learned heterogeneity.

Effects of cryoDRGN-ET training hyperparameters. We evaluated 
the distribution of translational states obtained when training with 
different latent embedding dimension sizes (z = 8 in Fig. 2). While 
cryoDRGN-ET identified less heterogeneity and missed low-occupancy 
translational states in runs with smaller latent embedding dimen-
sions (z = 2 and z = 4), similar heterogeneity was obtained with a 
higher-dimension latent space (z = 8 and z = 16; Supplementary Fig. 2). 
It is possible that smaller latent space dimensions have insufficient 
representational capacity to model low-population translational states. 
We additionally evaluated the maps obtained from cryoDRGN-ET 
training runs with different architecture sizes (256 × 3 for the encoder 
and decoder architecture, and 512 × 3 for the encoder and decoder 
architecture). Volumes sampled from these cryoDRGN-ET training runs 
were qualitatively similar, but these smaller networks did not identify 
the minor A*, P/E ribosome population.

Analyzing effects of pose errors. To evaluate the effects of inaccura-
cies in particle poses required as inputs by cryoDRGN-ET, we trained 
cryoDRGN-ET models using poses from the consensus refinement 
with random perturbations of either 1∘, 2∘, 3∘, 5∘ or 10∘. For each experi-
ment, we perturbed particles’ poses by a fixed amount at a random 
orientation, and the same perturbation was applied to all tilt images 
for each particle. We analyzed homogeneous reconstructions and 
representative volumes from training runs obtained when using each 
set of perturbed poses. As expected, increasing rotational errors in 
poses led to homogeneous reconstructions with worsening resolu-
tion (Supplementary Fig. 3a,b). At larger deviations, low-occupancy 
translational states were not visible and more volumes were too 
noisy to be classified into any of the translational states (Supplemen-
tary Fig. 3c–e). However, cryoDRGN-ET was robust to smaller pose 
errors of 1∘, producing similar heterogeneity and sampled densities  
(Supplementary Fig. 3c,e,f).

3D classification benchmark
Benchmarking for 3D classification was performed with RELION (v3.1)38, 
analyzing subtomograms exported from the M software4. These sub-
tomograms, derived from a 3.6 Å map obtained after refinement, had 
a box size of 294 pixels and a pixel size of 1.7005 Å. To compare against 
cryoDRGN-ET, classification was conducted without alignment, using 
the 3.6 Å map and corresponding poses from M. The map underwent 

a low-pass filter of 20 Å and classification was performed with a soft 
body mask, generating four classes per classification round. The regu-
larization parameter varied from 1 to 10, and the resolution of E-steps 
was constrained between 5 and 10. All classification rounds produced 
maps in the A, P state, and volumes from a representative classification 
round are shown in Supplementary Fig. 11.

We compared the computational cost of classification with RELION 
with the cost of training a cryoDRGN-ET model. One round of classifica-
tion at high resolution (D = 294, 1.7 Å/pix) in RELION required 43.20 h 
(5 MPIs, 8 threads). To compare runtime against cryoDRGN-ET at 2× 
binning, we also carried out classifications in RELION without align-
ment on subtomograms with a box size of 128 pixels at 3.9 Å/pixel. For 
these downsampled images (D = 128, 3.9 Å/pix), both cryoDRGN-ET 
and RELION are substantially faster requiring 3.58 h for cryoDRGN-ET  
(1 GPU) and 7.58 h for RELION (4 MPIs, 8 threads; Supplementary Table 2).

TomoDRGN analysis
TomoDRGN models were trained using software version 0.2.2 on 
the 70S ribosome and FAS complex subtomogram datasets. We 
used architecture and training settings matching the experiments 
reported in work by Powell et al.39, including additional flags for dose 
exposure weighting, lattice masking, random tilt sampling and a 
latent variable dimension of 128. Resulting latent embeddings and 
volumes were analyzed using the same cryodrgn analyze pipeline. 
Networks with default architecture settings of 256 × 3 were trained 
for 50 epochs.

S. cerevisiae sample preparation
S. cerevisiae cells were grown in log phase conditions to an optical 
density at 600 nm of 0.8. In total, 4 μl of the cells was applied to a 
glow-discharged 200-mesh holey carbon grid copper grid (Quantifoil 
R1.2/3) and vitrified in a liquid ethane using Vitrobot Mark IV (Thermo 
Scientific) set at 4 ∘C and 100% humidity. The settings used were: blot 
force, 10; blot time, 10 s; wait time, 1 s. Samples were stored under liquid 
nitrogen until use. Grids were clipped in slotted Autogrids (Thermo 
Fisher Scientific) and subjected to automated lamella preparation 
using an Arctis cryo-plasma FIB (Thermo Fisher Scientific) with Auto-
TEM Cryo software (Thermo Fisher Scientific) as described elsewhere. 
Before milling, grids were coated with a layer of ion-sputtered, metallic 
platinum (Pt) for 30 s (Xe+, 12 kV, 70 nA). This was followed by 400-nm 
cryo-deposition of organometallic Pt using the gas injection system, 
then an additional ion-sputtered platinum layer (Xe+, 12 kV, 70 nA, 
120 s). Next, grids were surveyed using Maps software (Thermo Fisher 
Scientific) for lamella site identification followed by automated lamella 
preparation using AutoTEM Cryo with a final thickness range set of 
100–250 nm. All FIB milling was performed using xenon. After the final 
milling step, the lamellae were again sputter coated with a thin layer of 
ion-sputtered metallic Pt (Xe+, 12 kV, 30 nA, 8 s).

S. cerevisiae dataset acquisition
Datasets were collected using a Krios G4 equipped with XFEG, Selectris 
X energy filter and Falcon 4 direct electron detector (Thermo Fisher Sci-
entific). Tilt series were collected with a dose-symmetric tilt scheme40 
using TEM Tomography 5 software (Thermo Fisher Scientific). The tilt 
span of ± 60° was used with 3° steps, starting at ± 10° to compensate for 
the lamella pre-tilt. The target focus was changed for each tilt-series in 
steps of 0.25 μm over a range of −1.5 μm to −3.5 μm. Data were acquired 
in EER mode of Falcon 4 with a calibrated physical pixel size of 1.96 Å 
and a total dose of 3.5 e-/Å2 per tilt over ten frames. A 10-eV slit was 
used for the entire data collection. Eucentric height estimation was 
performed once for each lamella using the stage tilt method in TEM 
Tomography 5 software. Regions of interest were added manually, and 
positions saved. Tracking and focusing were applied before and after 
acquisition of each tilt step. The energy filter zero-loss peak was tuned 
only once before starting the data acquisition.
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S. cerevisiae dataset preprocessing
The data were preprocessed using TOMOgram MANager (TOMOMAN)55,  
which calls the following external packages. EER images were motion 
corrected using a modified implementation of RELION’s motion-
cor56. The defocus was estimated using tiltCTF as implemented 
within TOMOMAN (tiltCTF uses CTFFIND4 for some steps57). Tilt 
series were aligned using fiducial-less alignment in AreTomo52. 
Initial tomograms without CTF correction were reconstructed 
using IMOD’s tilt package58 with IMOD reconstruction module in 
TOMOMAN. The 3D CTF corrected tomograms at 8× binning were 
reconstructed using novaCTF59 module in TOMOMAN and used for 
template matching.

S. cerevisiae ribosome subvolume averaging
Initial particle positions for 80S ribosomes were determined using 
the noise correlation template matching approach implemented 
in STOPGAP60. PDB 6GQV (ref. 61 for 80S ribosomes was used to 
generate a template using the simulate command in cisTEM62. 
Approximately 1,000 particles per tomogram were picked from 
260 tilt series. Subsequent subtomogram averaging and classifi-
cation were performed using STOPGAP60. Then, 3D classification 
was performed using simulated annealing stochastic hill climb-
ing multi-reference alignment16,60. The resulting 130,000 particles 
were then exported to Warp63 using TOMOMAN55. Subtomograms 
were reconstructed in RELION (v3.0)38 convention using Warp at 
2× binning (3.92 Å/pix). An iterative approach with subtomogram 
alignment and additional 3D classification in RELION and tilt-series 
refinement in M was performed. First, subvolumes were aligned in 
RELION 3.1 using a ribosome-shaped mask. Aligned subvolumes were 
then classified while only performing local search for alignment with 
a ribosome-shaped mask. This resulted in 119,000 particles that were 
imported to M for multi-particle tilt-series refinement while solving 
for sample deformations. For final averages, 119,000 particles were 
reconstructed at an unbinned pixel size of 1.96 Å, and another round 
of subtomogram alignment in RELION was performed with a mask 
focused on the LSU. These particle positions were then imported 
to M for multi-particle tilt-series refinement4 to solve for sample 
deformations and CTF. For the LSU focused reconstruction and the 
subsequent analysis of the structural heterogeneity of the 80S ribo-
some, an additional round of subtomogram alignment in RELION 
and subsequent tilt-series refinement in M were performed using 
a focused mask around the LSU. This resulted in a 4.3 Å reconstruc-
tion of the 80S ribosome. The final set of 119,000 particles was then 
extracted as 2D subtilts at a binning of 1× and 2× using Warp, and 
used for analyzing conformational heterogeneity with cryoDRGN-ET.

S. cerevisiae ribosome cryoDRGN-ET analysis
CryoDRGN-ET training: full dataset. A cryoDRGN-ET model was 
trained on the full dataset of 119,031 particles for 50 epochs, with the 
top ten tilts used during training (D = 128, 3.92 Å/pix). The architec-
tures of the two encoder MLPs and decoder MLP were 1,024 × 3, and 
the latent variable dimension was 8. The model was trained for 26 
epochs across four A100 GPUs, taking 10 h and 40 min total. Once 
trained, cryoDRGN-ET’s analysis pipeline (‘cryodrgn analyze’) was 
used to visualize the latent space and produce representative density 
maps. We sampled both 20 structures for initial visualization and 
100 density maps for a more comprehensive assessment. The UMAP 
visualization of the latent space revealed three clusters of particles, 
which were assigned as (1) outliers, (2) the SSU rotated particles and 
(3) the SSU non-rotated particles by visual inspection of representa-
tive density maps from each cluster. Particles corresponding to each 
cluster were selected using cryoDRGN-ET’s interactive lasso tool on the 
UMAP visualization of the latent embeddings. A homogeneous recon-
struction of each set of particles was then performed with ‘cryodrgn 
backproject_voxel’ (Fig. 3a).

Voxel-based reconstruction. We carried out voxel-based backprojec-
tions for the dataset of 93,281 SSU rotated and non-rotated particles 
when using 1, 2, 5, 8, 10, 16 and 32 tilts per particle. We did not explore 
using all 41 tilts for these comparisons and further experiments on this 
dataset, as many particles did not have all 41 tilt images available. We 
additionally carried out voxel-based backprojections with all available 
tilts per particle for both the full dataset of 119,031 particles and the 
filtered set with 93,281 particles to assess the effects of particle filter-
ing. As before, when using a subset of tilts, tilts were chosen to be those 
with lowest dose exposure (collected earliest in the tilt series). Local 
resolution estimates were made in RELION (v4.0)54.

CryoDRGN-ET training: hierarchical analysis. Three additional 
cryoDRGN-ET models were trained on the remaining good particles 
(93,281 particles; Fig. 3a), the SSU rotated state (62,624 particles) 
and SSU non-rotated state (30,657 particles; Fig. 3b). All training runs 
were carried out for 50 epochs, with latent variable dimension 8 and 
encoder and decoder MLP dimensions of 1,024 × 3. The training run on 
all SSU rotated and non-rotated particles took 18 h and 36 min on one  
A100 GPU, the training run on the SSU rotated particles alone took 
12 h and 12 min on one A100 GPU, and the training run on the SSU 
non-rotated particles alone took 6 h and 8 min on one A100 GPU.

CryoDRGN-ET ensemble analysis. After cryoDRGN-ET training, the 
distribution of structures from each training run was systematically 
sampled by using the ‘cryodrgn analyze’ pipeline with k = 100, where 
100 representative density maps were generated at k-means cluster 
centers of the latent embeddings. For the two training runs that sepa-
rately processed SSU rotated particles and SSU non-rotated particles, 
we classified all 100 representative density maps into corresponding 
translational states. We searched density maps for the presence of fac-
tors seen previously in in situ eukaryotic ribosome datasets including 
the A tRNA, P tRNA, E tRNA, A/P tRNA, P/E tRNA, A/T tRNA, eEF2 and 
eEF1A18,19. More specifically, to classify density maps, we docked in ribo-
some structures (PDB IDs: 3J7R ref. 64, 5LZS ref. 30, 6GQV ref. 61 and 
6TNU ref. 65) that included these tRNA and elongation factors, and we 
then inspected maps to identify the presence of factors. A representa-
tive structure for each state was manually selected for visualization in 
Fig. 3. We additionally identified all representative density maps that 
included density for eIF5A, as previous density was visible in the eIF5A 
factor-binding site in a prior in situ eukaryotic ribosome dataset18. We 
further pinpointed maps that included eEF3 (an essential fungal elon-
gation factor32), along with maps that included uL10 and the NTD of 
P1 and P2. From both of these training runs, we additionally identified 
representative density maps that included partial density for poly-
somes. Finally, from the training run that included both SSU rotated 
and non-rotated particles together, we identified a membrane-bound 
representative ribosome map.

High-resolution reconstruction and validation. To validate each 
state, the particles corresponding to each selected cluster center from 
k-means clustering were combined. We then backprojected the tilt 
images from the high-resolution dataset (D = 256, 1.96 Å/pix) using ‘cry-
odrgn backproject_voxel’. We compute FSC curves between half-maps 
to assess resolution. We apply a real-space mask to each volume before 
computing the FSC via ‘cryodrgn gen_mask’, generated by thresholding 
a density map at half of its max density, dilating the mask by 25 Å and 
tapering the mask to 0 over 15 Å from the dilated boundary via a soft 
cosine edge. High-resolution backprojections were low-pass filtered 
to the FSC0.143 resolution for visualization.

To further validate translational states and the placement of 
factors in these states, we fit individual factors into backprojected 
volumes as rigid bodies and evaluated the match with surrounding 
density. To color factors in representative density maps and reconstruc-
tions (Fig. 3b), and to visualize the fit of individual factors in density 
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(Fig. 3c), atomic models for each state were assembled by docking 
into high-resolution reconstructions. For each translational state, we 
obtained atomic models for the elongation factors and tRNAs sepa-
rately, along with separate atomic models for the LSU and SSU, and we 
docked each of these models as rigid bodies into the high-resolution 
reconstruction density maps with the ‘fitinmap` tool in ChimeraX66. 
For the eEF1A, A/T, P state, we obtained atomic models for eEF1A, the 
A/T tRNA and the P tRNA from PDB 5LZS ref. 30 and the large subunit 
(LSU) and SSU from PDB 3J78 ref. 67. For the A, P state, the A tRNA, 
P tRNA, LSU and SSU were obtained from PDB 6TNU ref. 65. For the 
post-translocation states, the eEF2, E tRNA, LSU and SSU were obtained 
from PDB 6GQV ref. 61, and the P tRNA was obtained from PDB 6TNU 
ref. 65. For fitting in an atomic model for eIF5A, we used eIF5A model 
from PDB 5LZS ref. 30. For fitting in an atomic model for eEF3, we used 
the eEF3 model from PDB 7B7D ref. 32.

To observe SSU rotation in Extended Data Fig. 7, we fit atomic mod-
els for the SSU head, SSU body and LSU separately into high-resolution 
reconstructions for each visualized translation state. These three rigid 
bodies were obtained from an atomic model of the S. cerevisiae ribo-
some with the SSU in a non-rotated state (PDB 3J78)67. After these three 
rigid bodies were sequentially fit into each density map in ChimeraX66, 
the resulting atomic models were aligned with PDB 3J78 on the large 
subunit to visualize SSU rotation and rolling. To visualize the SSU head 
swivel, models containing the SSU head and body alone were aligned 
on the SSU body.

S. cerevisiae FAS subvolume averaging
Initial particle positions for FAS were determined using the noise cor-
relation template matching approach implemented in STOPGAP60. 
PDB 6TA1 (ref. 68) for FAS ribosomes was used to generate a template 
using the simulate command in cisTEM62. Approximately 200 particles 
per tomogram were picked from 260 tilt series. Subsequent subtomo-
gram averaging and classification were performed using STOPGAP60.  
3D classification was performed using simulated annealing stochas-
tic hill climbing multi-reference alignment60. The resulting 33,492 
particles were then exported to the Warp63, RELION, M pipeline using 
TOMOMAN55.

Subvolumes were reconstructed and aligned using Warp and 
RELION 3D-autorefine, first with a 64-pixel box size and 7.84 Å per pixel 
followed by further refinement with a 128-pixel box and 3.92 Å pixel 
size. The particles were then subjected to multi-particle refinement 
in M for two iterations using a 3 × 3 image warp grid and 3 × 3 × 2 × 10 
volume warp grid. Defocus and movie frame alignment were refined 
only in the second iteration. The refined particles were exported as 
both reconstructed subvolumes and aligned image series with a box 
size of 300 pixels at 1.96 Å per pixel.

S. cerevisiae FAS cryoDRGN-ET analysis
For cryoDRGN-ET heterogeneity analysis, subtilts were Fourier cropped 
to a box size of 96 pixels resulting in a pixel size of 6.13 Å. A cryoDRGN-ET 
model was trained using the first ten tilts for the full dataset of 33,492 
particles. Training for 50 epochs using an eight-dimensional latent 
variable model was completed in 3 h and 50 min on a single A100 GPU.

After training, the ‘cryoDRGN analyze’ pipeline was used to per-
form k-means clustering of the latent embeddings with k = 20 and 
visualize representative density maps at the cluster centers. Particles 
were assessed based on the manual inspection of k-means centers maps 
and selected using cryoDRGN’s interactive lasso tool on the UMAP 
visualization of the latent embeddings. Particle indices were then used 
to filter the 3D subvolume star file yielding a subset of 5,239 selected 
‘good’ particles and 28,253 unselected ‘bad’ particles.

Subvolumes with a box size of 300 pixels and 1.96 Å pixel size cor-
responding to the cryoDRGN-ET selected and unselected subsets were 
subjected to RELION 3D autorefine, producing a reconstruction with a 
global resolution of 8.8 Å estimated by RELION after processing without 

imposing symmetry. Particles from the refinement were then imported 
into M and exported as subtilts with a box size of 300 at 1.96 Å/pix. The 
subtilts were downsampled to a box size of 128 and a pixel size of 4.6 Å 
for a final round of cryoDRGN heterogeneity analysis using the same 
training parameters as previously described (Supplementary Table 2).

S. cerevisiae FAS subvolume classification
Subvolume 3D classification on the full FAS dataset was performed 
in RELION after exporting subvolumes from M using the same pose 
information, box size and pixel size as the subtilts used for initial 
cryoDRGN-ET training (D = 96, 6.15 Å/pix). A volume reconstructed 
from the downsampled particles from M was low-pass filtered to 30 Å 
for the initial reference and mask generation. RELION 3D classification 
was performed with K = 3, T = 2 to identify a subset of 4,633 particles.

Tomogram visualization
Deconvolved tomograms were constructed in Warp with a pixel size of 
15.68 Å. Particle indices identified by cryoDRGN-ET analysis were used 
to filter the associated 3D subvolume star for membrane-associated 
ribosomes, selected ribosome particles (rotated and non-rotated SSU) 
and filtered FAS particles. Particle mapping and tomogram visualiza-
tion was carried out using the plugin ArtiaX in ChimeraX66. Membrane 
surface density was generated using Membrain-Seg69 and Segger70.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
S. cerevisiae raw data have been deposited to EMPIAR-11658. Maps have 
been deposited to the Electron Microscopy Data Bank (EMD-18197, 
EMD-18231, EMD-18232, EMD-45235 and EMD-45236) and cryoDRGN 
model weights, density maps and any associated files needed to repro-
duce this analysis are available on Zenodo via https://doi.org/10.5281/
zenodo.11399378 (ref. 71). Atomic models used from previous studies 
were obtained from the PDB (7PHA, 7PHB, 7PHC, 7PH9, 3J7R, 5LZS, 
6GQV, 6TNU, 3J78, 7B7D, 6TA1, 6QL5 and 6QL6). The dataset from 
EMPIAR-10499 was analyzed in this study.

Code availability
Software is available at https://github.com/ml-struct-bio/cryodrgn/ 
in version 3.0.0-beta.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Latent space-based filtering of the M. pneumoniae 
bacterial ribosome subtomograms. a. UMAP visualization of cryoDRGN’s latent 
space representation from a training run using all particles (D=128, 3.9 Å/pixel), 
showing example particle images for the highlighted group of outlier particles.  
b. Visualization of the latent space along the first and second principal 

components (PCs), showing representative density maps for the highlighted 
traversal across PC1. c. UMAP visualization of the latent space for the same 
cryoDRGN training run colored by PC1 using the same coloring as in b) (left), and 
colored by a particle selection that excludes outlier particles (right).
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Extended Data Fig. 2 | Homogeneous reconstruction of the M. pneumoniae 
ribosome varying the number of tilt images (D=294, 1.7 Å/pixel). a. Local 
resolution estimated from RELION 4.055 for reconstructions using 1 tilt, 8 tilt, and 

41 tilts per particle, with maps obtained through voxel-based backprojection  
in cryoDRGN-ET. b. FSC curves between half-maps for varying numbers of tilts 
per particle.
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Extended Data Fig. 3 | SSU rotation of the M. pneumoniae ribosome identified 
in cryoDRGN-ET. a, b. In the left column is the UMAP visualization of the latent 
space from cryoDRGN-ET training on the filtered particle set, with a heatmap 
overlaid depicting the distribution of particles in a. the A, P state, and b. the 

A*, P/E state. In the middle column are density maps obtained by voxel-based 
backprojection of particles (D=294, 1.7 Å/pixel) from these two states low-pass 
filtered to 10 Å resolution. c. These two reconstructions are overlaid and viewed 
facing the SSU to depict SSU rotation.
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Extended Data Fig. 4 | Additional states of the M. pneumoniae ribosome 
identified in cryoDRGN-ET. a. UMAP visualization of the latent space from 
cryoDRGN-ET training (D=128, 3.9 Å/pixel) on the M. pneumoniae ribosome 
filtered particle set, using 41 tilts per particle during training. Latent embeddings 

for representative density maps are highlighted. b. Representative maps with 
(left) and without (right) density present for the NTD of L7/L12, as highlighted by 
the red asterisk. c. Representative map depicting a membrane-bound ribosome. 
d. Representative map depicting polysome density.
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Extended Data Fig. 5 | Homogeneous reconstruction of the S. cerevisiae 
ribosome varying the number of tilt images (D=256, 1.96 Å/pixel). a. Local 
resolution estimated from RELION 4.055 for reconstructions using 1 tilt, 8 tilt, and 
32 tilts per particle, with maps obtained through voxel-based backprojection 

in cryoDRGN. b. FSC curves between half-maps for varying numbers of tilts per 
particles. c. FSC curves for either the full particle set (119,031 particles) or the 
filtered particle set (93,281 particles) using all tilts per particle.
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Extended Data Fig. 6 | Homogeneous reconstruction of translational states 
of the S. cerevisiae ribosome identified in cryoDRGN-ET in the eEF1A, A/T, 
P state. a. The left panel shows the UMAP visualization of the latent space from 
cryoDRGN-ET training on the indicated particle set, with overlaid heatmaps 
highlighting particles belonging to each state. The right column depicts the 
homogeneous reconstruction (D=256, 1.96 Å/pixel) from cryoDRGN-ET’s voxel-
based backprojection for particles selected in each state. Reconstructions are 
low-pass filtered to the FSC resolution and colored by corresponding factors.  

b. Superposition of the P tRNA, A/T tRNA, and eEF1A from this state vs the codon 
recognition state (cyan) from PDB ID: 5LZS ref. 30. The P tRNA, A/T tRNA, and 
eEF1A were separately docked into the reconstruction from a) for comparison 
to the codon recognition state. Density is shown from the reconstruction in a) 
around these factors. Arrows indicate the shift in position of the A/T tRNA and 
eEF1A between the codon sampling and codon recognition states. c. FSC curves 
bewteen half-maps for the eEF1A, A/T, P state.
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Extended Data Fig. 7 | Conformational motions of the S. cerevisiae ribosome 
SSU identified in cryoDRGN-ET in the following states: a. the eEF1A, A/T, P 
state; b. the A, P state; c. the eEF2, P, E state; and d. the eEF2, P state. In all 
panels, the non-rotated S. cerevisiae ribosome structure in PDB ID 3J78 ref. 68 is 
shown in grey, and docked models into high-resolution reconstructions from 
cryoDRGN-ET are shown in green. The left column shows the rotation of the 
SSU, with models aligned on the LSU (LSU not shown for clarity) and red arrows 
indicating rotations. The middle column shows rolling of the SSU, again with 
models aligned on the LSU and red arrows indicating rolling. Finally, the right 
column shows the SSU head swivel, with models aligned on the SSU body  

(LSU removed and not shown), and red arrows indicating cases where a minor 
head swivel is present. Rotations angles between docked models and coordinates 
from PDB ID 3J78 ref. 68 are measured in ChimeraX67. For each state we report 
two rotation angles. The angle representing either ‘SSU rotation’ or ‘SSU rolling 
and rotation’ is measured as the rotation angle required to superimpose the 
state’s SSU onto the SSU of PDB 3J78, when structures aligned on the LSU. The 
angle representing the head swivel is measured as the rotation angle required 
to superimpose the SSU head between that state and PDB ID 3J78, when the SSU 
structures are aligned on the SSU body.
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Extended Data Fig. 8 | Structures of polysomes, eIF5A, uL10 and NTD-P1/P2, 
and eEF3 identified in cryoDRGN-ET analysis of the S. cerevisiae ribosome 
from a. SSU rotated and b. SSU non-rotated particles. In the left column, 
UMAP visualization of the latent space from cryoDRGN-ET training (D=128, 3.92 
Å/pixel) on the indicated particle set. Latent embeddings for representative 
density maps are highlighted. In the right column of a), representative density 

maps from cryoDRGN-ET are shown depicting ribosomes with and without 
eIF5A (top row) and with polysome density (bottom row). In the right column 
of b), representative maps from cryoDRGN-ET are shown depicting ribosomes 
with and without uL10(P1-P2)2 density (top row), with and without eEF3 density 
(middle row), and with polysome density (bottom row). Atomic models for eIF5A 
and eEF3 are shown in density from the cryoDRGN-ET representative map.
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Extended Data Fig. 9 | S. cerevisiae fatty acid synthase classification and 
atomic models fit in maps. a. Maps and particle counts from RELION 3D 
classification (3 classes). The map from the best quality particles is shown in 
magenta. b. D3 symmetry RELION refinement of 5,239 high quality particles 
selected by cryoDRGN-ET (Fig. 4) with a fit atomic models for the non-rotated 
(blue, PDB ID: 6QL6) and rotated (green, PDB ID: 6QL5) states36. Left: FAS map 

with best fitting atomic model (non-rotated state). Middle: FAS map at low 
threshold showing density for ACP (red) in the non-rotated state. Right: FAS map 
at low threshold missing density for ACP (orange) in the rotated state. c. Sampled 
volumes from the extremes of a scan along PC1 of the latent space (left) with best 
fitting atomic models (non-rotated PDB ID: 6QL6 ref. 36 in blue; rotated PDB ID: 
6QL5 ref. 36 in green).
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Extended Data Fig. 10 | TomoDRGN39 performance on M. pneumoniae 
ribosome and S. cerevisiae fatty acid synthase particles. a. 20 representative 
sampled volumes across the latent space (black dots in UMAP representation, 
left) are all in the A, P state (right). b. Sampled volumes (right) across PC1 of 

the latent space (left) show isosurface changes rather than conformational 
heterogeneity. Maps are generated from points in the latent space depicted with 
corresponding colors.
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