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Advancesin cryo-electron tomography (cryo-ET) have produced new

opportunities to visualize the structures of dynamic macromolecules

in native cellular environments. While cryo-ET canreveal structures at
molecular resolution, image processing algorithms remain abottleneck
inresolving the heterogeneity of biomolecular structures in situ.

Here, weintroduce cryoDRGN-ET for heterogeneous reconstruction

of cryo-ET subtomograms. CryoDRGN-ET learns a deep generative

model of three-dimensional density maps directly from subtomogram
tilt-series images and can capture states diverse in both composition

and conformation. We validate this approach by recovering the known
translational states in Mycoplasma pneumoniaeribosomes in situ. We then
performcryo-ET on cryogenic focused ion beam-milled Saccharomyces
cerevisiae cells. CryoDRGN-ET reveals the structural landscape of

S. cerevisiaeribosomes during translation and captures continuous motions
of fatty acid synthase complexes inside cells. This method is openly available
inthe cryoDRGN software.

Cryo-ET is an imaging technique that provides structural insights
spanning cellular to molecular length scales' . By computationally
combiningaseries of tiltimages of intact cells or thinly milled lamellae,
cryo-ET canvisualize the architecture of whole cells in three dimen-
sions at nanometer resolution. Further computational processing of
the resulting three-dimensional (3D) tomograms with algorithms for
segmentation and subtomogram reconstruction can resolve struc-
tures at sub-nanometer resolution, providing detailed snapshots of
macromolecular structures and their localization in native contexts* ™.

Amajor challenge inimage processing workflows for cryo-ET isthe
analysis of structural heterogeneity within subtomogram data. Subto-
mogram reconstruction algorithms must cope withimaging attributes
specificto cryo-ET such as the extremely low signal-to-noise ratio (SNR)

inexposure-limited individual tiltimages, as well as the inherent com-
plexity from variations in conformation and composition of biomo-
lecular complexes within cellular samples taken without purification.
While some advanced methods for heterogeneity analysis have been
proposed®*¢, the majority of subtomogram processing workflows
rely on 3D classification to cluster subtomograms into a few discrete
conformational states. Although this approach has been successfully
used to reveal distinct states of macromolecular machines in situ” ",
current processing workflows remain unwieldy, with many manual
steps and substantial computational requirements. Furthermore, these
methods are not well suited for modeling continuous heterogeneity
and require specifying the number of expected states a priori, often
additionally requiring user-provided masks to focus classification on
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Fig.1| The cryoDRGN-ET method for heterogeneous reconstruction of cryo-
ET subtomograms. a, Overview of tomography data acquisition and selection of
subtomograms, including aschematic showing the series of tilt images that are
obtained for each subtomogram. b, CryoDRGN-ET architecture. Particle subtilt
images are transformed into a latent embedding through a multi-view encoder.
The decoder includes a multilayer perceptron (MLP) that can reconstruct density
maps given a particle’s latent embedding. ¢, Density map generation. Once
trained, particle latent embeddings can be visualized with UMAP and density
maps can be generated via two approaches. First, density maps can be directly
generated with the parameterized MLP given any latent embedding. For example,
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four density maps are generated from the colored pointsin the latent space,
with density regions colored to show the ribosome’s large subunit (blue),

SSU (yellow), and different binding factors. Second, density maps can be
generated by a voxel-based homogeneous reconstruction from particles
selected based on the latent representation. d, Analysis of cryoDRGN-ET’s
generative model. Density maps can be systematically sampled from the latent
representation (here we show k-means cluster centers, k =100), and continuous
trajectories between points in latent space can be explored. Density maps of
representative states can be classified to further visualize the distributions

of particle classes across the latent space.

regions with known variability. More fundamentally, 3D classification
requires averaging subtomograms fromthousands of particlesto obtain
well-resolved structures, leading to trade-offs between the number of
states that can be reconstructed and the resolution of density maps of
these states. While machine learning methods based on deep neural
networks have shown recent successes in modeling structural vari-
ability insingle-particle cryo-electron microscopy (cryo-EM)*° 2, their
potential has yet to be realized in modeling heterogeneous structures
from the cellular milieu.

Here, we introduce cryoDRGN-ET for heterogeneous recon-
struction of cryo-ET data (Fig. 1). CryoDRGN-ET learns a deep gen-
erative model of 3D density maps directly from particle tilt images.
Similar to the cryoDRGN method for single-particle analysis (SPA)*,
cryoDRGN-ET’s generative model for structure is parameterized using
aneural field” thatis able to capture diverse sources of heterogeneity,
including compositional changes, continuous conformational dynam-
ics,andimpurities and artifacts fromimaging. Applied to a previously
published in situ dataset of the bacterial ribosome, cryoDRGN-ET
recapitulates the distribution of translational states in quantitative
agreement with prior analyses”, while visualizing continuous motions
and membrane-associated conformations in a single model. We then
performed cryo-ET on cryogenic focused ion beam-milled lamellae of
S. cerevisiae cellsand used cryoDRGN-ET to reveal the structural land-
scape of the S. cerevisiae eukaryotic ribosome. Finally, we showcased
cryoDRGN-ET by analyzing the structure and conformational hetero-
geneity of the S. cerevisiae fatty acid synthase (FAS). CryoDRGN-ET is

open-source software availablein version 3.0 of the cryoDRGN software
package (https://cryodrgn.cs.princeton.edu/).

Results

Heterogeneous subtomogram reconstruction with
cryoDRGN-ET

CryoDRGN-ET is a generative neural network method for recon-
structing adistribution of density maps from cryo-ET subtomogram
data. Asinthe cryoDRGN method®, cryoDRGN-ET uses a coordinate-
based neural network to represent 3D density maps thatis conditioned
on a continuous latent variable z € R for modeling heterogeneity.
To train cryoDRGN-ET, we extend the standard cryo-EM image forma-
tion model to tomography (Methods). Unlike in SPA where asingle
projection image is captured for each particle, in tomography,
multiple projections of the same particle are captured from
different tilt angles (Fig. 1a). Instead of operating on 3D subtomo-
grams extracted for each particle, which can suffer from challenges
due to the missing wedge and higher computational requirements,
cryoDRGN-ET processes the series of tilt images for each particle,
referred to as ‘subtilts’, an approach followed by other recent
methods®'®"?**, CryoDRGN-ET aggregates the different tilt images
for each particle with amulti-view encoder that outputs a vector z;,
alsoreferred to as alatentembedding, representing the conforma-
tional state of particle i (Fig. 1b). Then, given this latent embedding
z;, cryoDRGN-ET’s generative model outputs a 3D density map V..
This map canthen be rendered as two-dimensional (2D) projections
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corresponding to each particle’s tilt images given the image
pose and estimated contrast transfer function (CTF) parameters.
We model high-frequency signal attenuation as a function of elec-
tron exposure dose in the CTF for each tilt image*. A maximum
likelihood objective is used to compare the rendered 2D projec-
tions against the observed tiltimages. We additionally implement
computational enhancements in the cryoDRGN software for
handling large subtomogram datasets containing millions of
particle images (Methods).

Once training is complete, cryoDRGN-ET provides a per-particle
estimate of the dataset’s heterogeneity that can be analyzed through
multiple approaches (Fig. 1c,d). The distribution of latent embeddings
oftheparticlesinthe dataset canbe visualized in 2D, for example, with
principal component analysis or uniform manifold approximation and
projection (UMAP*; Fig. 1c). In cryoDRGN-ET’s neural representation
of 3D density, a density map can also be generated from any point in
the latent space (Fig. 1c) and visualized to interpret the latent space
and explore the conformational distribution. To more systematically
analyze the observed heterogeneity, alarge number of representative
density maps canbe used to sort particlesinto distinct ‘classes’, and tra-
jectories can be generated by sampling maps along continuous pathsin
the latent space (Fig. 1d). Finally, observed states may be validated by
selecting constituent particles in particle classes (‘ensemble analysis’,
Fig. 1d) and performing a traditional homogeneous reconstruction
using voxel-based backprojection, which we newly implement in the
cryoDRGN software suite (Fig. 1c).

CryoDRGN-ET recovers bacterial ribosome translational
states

To test cryoDRGN-ET’s subtomogram analysis, we applied it to a
previously published in situ dataset of the Mycoplasma pneumoniae
bacterial ribosome after chloramphenicol (Cm) treatment*, comparing
against prior conventional 3D classification on this dataset”. Ribosome
subtilts and their associated pose and CTF parameters were obtained
froma3.6 A consensus refinement. We first assessed these particles’
quality by training cryoDRGN-ET on all 18,466 particles, identifying
outliers and particles that produce poor ribosome density maps to
excludeinfurthertraining runs (Extended Data Fig.1). We additionally
assessed the resolution of the reconstruction when varying the num-
ber of tilt images used per particle, finding no further improvement
when using more than eightimages per particle (Extended Data Fig. 2).
For subsequent cryoDRGN-ET analysis for this dataset, we trained on
the first ten tilts in the dose-symmetric tilt acquisition scheme for
each particle.

A cryoDRGN-ET network trained on the cleaned set 0f 16,655 par-
ticles reconstructed density maps displaying known compositional
and conformational heterogeneity in the bacterial ribosome, including
varying tRNA occupancy at the A-P-E sites, the appearance of elon-
gation factors, subunit rotation and local motions (Fig. 2). Density
maps from cryoDRGN-ET recapitulated the major translational states
previously identified in this Cm-treated M. pneumoniae ribosome
dataset”: the P state; EF-Tu-tRNA, P state; A, P state; and A*, P/E state
(Fig. 2a). These states show density for tRNAs and elongation factor
EF-Tu in the expected sites, with rotation of the small subunit (SSU)
most visible in the A*, P/E state as expected”. We classified 100 repre-
sentative density maps across the latent space to assign particlesinto
these four states, dividing the latent space into four distinct regions
(Fig.2band Supplementary Videos1and 2). This classification enabled
quantifying the relative occupancy of ribosomes in these four states,
with most particles representing the A, P state and other minor state
populations similar to those found previously by conventional 3D
classification (Fig. 2c). These state distributions remained mostly
consistent in earlier training epochs, with different latent variable
dimensions, and when using input poses with small additional errors
(Supplementary Figs.1-3).

Tovalidate cryoDRGN-ET density maps and our class assignments,
we verified that we could reproduce the structures from homogene-
ous reconstruction of each state’s particles (Supplementary Fig. 4).
Inaddition, these reconstructions confirmed the rotation of the SSU,
with the subunit rotated in the A*, P/E state relative to the A, P state
(Extended Data Fig. 3). We compared the estimated resolution from
homogeneous reconstruction for each particle class to those found
previously by conventional 3D classification”, finding similar relative
resolutionbetween states and higher resolutioninthree cases perhaps
due to improved particle classification. Unlike the original analysis
of this dataset, which relied on multiple rounds of 3D classification”,
cryoDRGN-ET canrecover all statesin asingle round of training without
the use of masks to focus onregions of expected variability in the tRNA
channel.Sincethe A, Pstateincluded the most particles, ahomogene-
ousreconstruction of this state produced the highest resolution map,
with a global estimated resolution of 3.8 A (Fig. 2d).

Beyond variation in the tRNA channel and factor-binding sites,
cryoDRGN-ET density maps exhibited local dynamics, additional pro-
tein factor variability and larger-scale background variation (Supple-
mentary Video 3). For instance, some cryoDRGN-ET maps showed the
L1stalkin the open state, while others included the closed state, with
L1 stalk closed conformations overlapping with the A*, P/E state and
partially withthe A, P state (Fig. 2e). We validated the observed L1stalk
conformations with a conventional homogeneous reconstruction from
each conformation’s particles (Supplementary Fig. 5). Additionally,
some cryoDRGN-ET maps showed density for the N-terminal domain
(NTD) of the L7/L12 protein (Extended Data Fig. 4a,b), which is often
challenging to resolve on ribosomes with SPA”. Finally, cryoDRGN-ET
density maps exhibited larger-scale background variation when using
all41tilts per particle, showing density for ribosomes bound to the cell
membrane in the expected orientation (Extended Data Fig. 4a,c)*,
along with density for neighboring ribosomes in polysomes, also in
a canonical orientation (Extended Data Fig. 4a,d)”. We expect that
analysis of background variation will be further enhanced when train-
ing cryoDRGN-ET on particle sets with larger box sizes that include
more surrounding context.

The native structural landscape of the S. cerevisiae ribosome
We further showcase cryoDRGN-ET by analyzing alarge cryo-ET dataset
of the S. cerevisiae eukaryotic ribosome using tomograms collected
from lamellae that were milled with cryogenic plasmafocusedionbeam
milling (cryo-PFIB). With cryoDRGN-ET, we analyzed heterogeneity in
the S. cerevisiae ribosome from in situ cryo-ET, recapitulating known
translational states and factor-binding events along with expected
continuous conformational motions and spatial background vari-
ability. Since we again found that using a subset of tilt images enables
high-resolutionreconstructions (Extended Data Fig. 5a,b), we carried
out all training runs using ten tilt images per particle for enhanced
computational efficiency on this larger dataset 0of 119,031 particles. We
began with a cryoDRGN-ET training run on the complete particle set,
finding that the UMAP latent space representation separated particles
intothree classes, correspondingto rotated SSU, non-rotated SSU and
agroup of outlier particles (Fig. 3a). Ahomogeneous reconstruction of
this outlier group yielded a very noisy map resembling broken particles
(Fig. 3a), and removing this group of 25,750 particles did not impact
theresolution of the consensus reconstruction (Extended Data Fig. 5¢).
Homogeneous reconstruction of the two remaining particle classes
verified that they corresponded to the SSU rotated and non-rotated
states (overlaid in Fig. 3a), and a subsequent cryoDRGN-ET training run
excluding outlier particles reproduced the separation of SSU rotated
and SSU non-rotated particles (Fig. 3a). To focus model capacity on fur-
ther delineating translational states, we trained separate cryoDRGN-ET
models on the SSU non-rotated and SSU rotated particles (Fig. 3b).
Density maps sampled from cryoDRGN-ET training on SSU
non-rotated and rotated particles could be classified primarily into four
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Fig.2| CryoDRGN-ET models translational states from anin situ
subtomogram dataset of the chloramphenicol-treated M. pneumoniae

70S ribosome (EMPIAR-10499)". a, Representative density maps from
cryoDRGN-ET depicting four translational states. b, UMAP visualization of latent
embeddings for all particles included in cryoDRGN-ET training, with overlaid
heat maps highlighting the particles belonging to each translational state. Latent
embeddings producing representative density mapsina are indicated in red.

¢, Quantification of particle populations in each observed translational state,
compared between cryoDRGN-ET and prior conventional 3D classification”.

d, High-resolution reconstruction from voxel-based backprojection in
cryoDRGN-ET for particles assigned to the A, P state. e, Representative maps
from cryoDRGN-ET displaying the L1stalk open (left) and closed (middle)
conformations. A kernel density estimate plot displaying the distribution of the
two L1stalk conformations in the latent space (right).

translational states (Fig. 3b), providingin situ evidence for these func-
tional states and their relative populations in S. cerevisiae ribosomes
(Supplementary Video 4). Most representative maps from the SSU
non-rotated particles corresponded to the eEF1A, A/T, P state, a stage
before peptidyl transfer. Indeed, the eEF1A, A/T, P state was the most
populated acrossthis S. cerevisiaein situ ribosome dataset (Extended
Data Fig. 6a), agreeing with recent characterization of eukaryotic
ribosomes in situ from Dictyostelium discoideum and human cells'>".
The conformation of eEF1A and the A/T tRNA in this state is aligned
with codon sampling rather than codon recognition (Extended Data
Fig. 6b)". Next, we noted a class of representative maps from the SSU
rotated particle set correspondingtothe A, P state, accounting for the
second largest particle population (Fig. 3b and Extended Data Fig. 6a).
Finally, fromthe SSUrotated particle set, we noted representative maps
corresponding to two post-translocation states: the eEF2, P, E state
and the eEF2, P state. We validated particle classification into these
four states through homogeneous reconstructions, finding that the
resulting reconstruction for each class reproduced expected tRNA and
factor density (Fig. 3c, Extended DataFig. 6 and Supplementary Fig. 6).
When fitting atomic models into these reconstructions, we observed

expected SSU motion across these states, with SSU rolling and rotation
visibleinthe A, P state and SSU rotation visible in the post-translocation
states (Extended Data Fig. 7). Because the eEF1A, A/T, P state and
the A, P state had the highest particle populations, reconstructions
from these states produced the highest resolution maps at a global
estimated resolutionof 4.4 A and 4.7 A, respectively (Fig. 3d, Extended
DataFig. 6 and Supplementary Fig. 6).

Asinthe case of the bacterial ribosome, cryoDRGN-ET was able to
further uncover larger-scale background variation and compositional
heterogeneity for additional protein factors beyond these canonical
translational states (Supplementary Video 5). For instance, repre-
sentative density maps from cryoDRGN-ET included membrane-bound
ribosomes (Fig. 3e) and polysomes (Extended Data Fig. 8), with poly-
some density visible in maps sampled from both SSU rotated and
non-rotated states. While in the case of the M. pneumoniae ribosome
using additionaltiltimages enabled better visualization of background
heterogeneity (Extended Data Fig. 4), in this case additional tilts did
not improve resolved polysomes (Supplementary Fig. 7). In addition
to membrane-bound ribosomes and polysomes, we found that some
representative maps included density for the initiation factor elF5A
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Fig.3|CryoDRGN-ET models in situ translational states of the S. cerevisiae
80S ribosome. a, UMAP visualization of cryoDRGN-ET’s latent space
representation of all particles (left) and after excluding a cluster of bad particles
(center). Visualizations are shown as scatterplots of particle latent embeddings
with the kernel density estimate overlaid. Density maps were obtained from
ahomogeneous reconstruction of particles from the three main clusters
(bottom) and overlaid (right) to show the SSU rotation. b, UMAP visualization
after cryoDRGN-ET training on SSU non-rotated particles (left) and SSU rotated
particles (center) with representative cryoDRGN-ET density maps depicting

Membrane

four translational states. Latent embeddings of the representative maps are
highlighted in the UMAP visualization. ¢, Atomic models were rigid-body
fitted into backprojected densities for the A/T tRNA and eEF1A (in eEF1A, A/T,
Pstate), Aand PtRNA (in A, P state), eEF2 (in the eEF2, P, E state), eEF3 (in the
eEF1A, A/T, P, eEF3 state) and elF5A (inthe A, P, elF5A state). d, High-resolution
backprojection of particles mapped to the eEF1A, A/T, P state (left) and the A,
P state (right). e, Representative cryoDRGN-ET density map for amembrane-
bound ribosome.

(Extended Data Fig. 8a)*°, and other maps included density for the
uL10(P1-P2), stalk (Extended Data Fig. 8b)*.. Finally, we noted that
some representative maps showed the presence of fungal-specific
elongation factor eEF3 (Extended Data Fig. 8b). eEF3 was present only
inrepresentative density maps sampled from SSU non-rotated particles

in the eEF1A, A/T, P state, aligning with prior suggestions that eEF3
binding s stabilized in non-rotated states®. Density for these additional
factors was validated with homogeneous reconstructions of identified
particles (Supplementary Figs. 8-10), for instance, with density for
elF5A and eEF3 agreeing with prior atomic models for these factors
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Fig.4 | CryoDRGN-ET modelsinsitu heterogeneity in the S. cerevisiae FAS.
a, UMAP visualization of cryoDRGN-ET’s latent space for all FAS particles,
with four representative density maps shown sampled from points with
corresponding colorsin the latent space. A cluster of high-quality selected
particles is highlighted in purple, and unselected particles are shown in gray.
b, UMAP visualization of cryoDRGN-ET training run on all FAS particles over
epochs of training, with particles selected froma highlighted in purple. In the
bottomright, particles selected from RELION 3D classification are overlaid on
the UMAP visualization from epoch 49. ¢, Side view (top row) and central slice
(bottom row) of refined structures from RELION. We show the C1symmetry
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refined map from selected particles (left), the C1 symmetry-refined map from
unselected particles (middle) and the D3 symmetry-refined map from selected
particles, colored by local resolution (right). d, GSFSC curves for refinements
from RELION for selected and unselected particles (solid lines) and FSC curves
between half-maps for backprojected maps from cryoDRGN-ET (dashed lines).
e, Latent space for cryoDRGN-ET trained on selected particles from a, with
colored points showing the trajectory across PC1. f, Sampled maps from
cryoDRGN-ET across the PC1 trajectory fromd, with insets showing motionin
the B subunits between the first and last maps.

that were determined from purified samples (Fig. 3¢c). Through these
analyses, we show that cryoDRGN-ET can model numerous sources of
heterogeneity in S. cerevisiae ribosomes, providing a new analytical
approach for interrogating structural distributions in situ.

Insitustructure of the S. cerevisiae FAS

As further demonstration of using cryoDRGN-ET for resolving struc-
tural heterogeneity in situ, we next applied cryoDRGN-ET to the
S. cerevisiae FAS. The S. cerevisiae FAS is a 2.6-MDa complex consist-
ing of six copies of a and 3 subunits that form a large barrel-shaped

structure® . To determine the structure of S. cerevisiae FAS in situ,
particles were selected from the same cryo-PFIB tomography dataset
used tostudy S. cerevisiae ribosomes. After aninitial round of template
matching and subtomogram averaging, we obtained a14.3 A consensus
refinement from which 1,269,832 subtilts for 33,492 particles were
exported alongwith corresponding refined poses and CTF parameters
for cryoDRGN-ET analysis.

We first trained a cryoDRGN-ET model on the full dataset of FAS
particles. When inspecting density maps sampled from the resulting
latent space, we found that cryoDRGN-ET identified a cluster of 5,239
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Fig. 5| Visualization of two representative S. cerevisiae tomograms. a,b, Ribosome particles are shown in green, FAS particles in purple and membrane-bound
ribosomes in pink. Membrane segmentation is shown in blue, highlighting plasma membranes and endoplasmic reticulum (a and b) and mitochondria (b).

Scalebar, 50 nm.

particlesresembling FAS (Fig. 4a). This separation of high-quality par-
ticles from noisy particles was evident even at early epochs of training
(Fig.4b). Homogeneous reconstructions with voxel-based backprojec-
tion produced maps of improved quality when using only the 5,239
filtered particles based on half-map Fourier shell correlation (FSC;
Fig. 4d). To further validate this particle selection, we carried out 3D
classification of the full particle set in RELION and isolated particles
belonging to the well-resolved class (Extended Data Fig. 9a), finding
that cryoDRGN-ET and RELION obtained a highly overlapping set of
filtered particles (Fig. 4b). Next, toimprove the reconstruction of the
FAS map from selected particles, we refined poses in RELION for the
filtered particle set from cryoDRGN-ET. Whereas an equivalent refine-
ment of the unselected particles produced anoisy map (Fig. 4c,d), the
refinement of selected particles showed improved global estimated
resolution (gold-standard Fourier shell correlation (GSFSC) of 8.8 A;
Fig. 4c,d). We then carried out a D3 symmetry refinement of selected
particles, furtherimproving the estimated resolution (GSFSC of 6.8 A;
Fig.4c,d).

The refined map for S. cerevisiae FAS in situ showed the density
for key structural features of the complex, including the equatorial
wheel created by the a subunits and the two domes made up of the
subunits® . Atomic models solved for FAS in a previously identified
non-rotated state fit well with this map (Fig. 4c and Extended Data
Fig. 9b)**. We observed low-resolution density in this map for the flex-
ibleacyl carrier protein, which carries substrates between active sites
inFAS (Extended DataFig. 9b). Here, acyl carrier proteinis found by the
FAS ketosynthase domain, taking the same conformation seen previ-
ously in yeast FAS structures in the non-rotated state® ",

We next applied cryoDRGN-ET on the selected subset of
high-quality FAS particles to explore any further heterogeneity. When
sampling density maps along the first principal component of the
resulting latent embeddings, we observed conformational dynamics
inthe two domes of FAS, including rotation of the 3 subunits (Fig. 4e,f)
and compactionofthe domes (Supplementary Video 6). These motions
align with previously observed rotated and non-rotated FAS struc-
tures®® and provide a view of intermediate conformations between
these states. Atomic models for the rotated and non-rotated states
of FAS can be docked into maps sampled at extreme values along the
first principal component axes of the latent embeddings (Extended
Data Fig. 9¢). Through analysis of this complex, we demonstrate that
cryoDRGN-ET canisolate high-quality particles and resolve conforma-
tional heterogeneity for structures beyond ribosomes.

Visualizing molecular heterogeneity in cellular contexts
Cryo-ET provides an opportunity to visualize biomolecular complexes
in their native environments. Since we processed datasets for the
S. cerevisiae ribosome and FAS from the same tomograms, we were
able to observe their relative positioning in situ by locating picked
particlesintomograms (Fig. 5and Supplementary Video 7). We focused
on visualizing high-quality particles for both cases by using particle
selections from cryoDRGN-ET filtering, selecting the 93,281 SSU rotated
and non-rotated particles for the S. cerevisiae ribosome (Fig. 3a) and
the 5,239 higher-quality particles from the FAS dataset (Fig. 4a). The
resultingtomogramvisualizations suggested that these filtered particle
sets mostly avoided spurious picks, with particles remaining within
the plasmamembranes (Fig. 5a,b) and outside mitochondria (Fig. 5b).
Ribosomes and FAS complexes are evenly distributed through the
cytosol without apparent correlation between their spatial positions
and orientations. When visualizing the membrane particle class corre-
spondingtothe representative volume sampled in Fig. 3e, we observed
expected positioning adjacent to membranes, validating particle class
selections from cryoDRGN-ET. By visualizing particle classes and con-
tinuous variationidentified by cryoDRGN-ET on tomogrames, itis thus
possible to use cryoDRGN-ET to reveal spatial relationships between
macromolecules’ heterogeneity and their cellular environment.

Comparing methods for in situ heterogeneity analysis
We compared cryoDRGN-ET to more conventional approaches for 3D
classification of subtomograms. As described above, 3D classification
with RELION*® reproduced selections of high-quality particles from
cryoDRGN-ET (Fig. 4b and Extended Data Fig. 9a). While 3D classifica-
tion was originally used to resolve the four major tRNA translational
states along with other heterogeneity like opening of the L1stalk and
SSU rotation on the M. pneumoniae ribosome dataset”, the analysis
relied on multiple rounds of 3D classification and the use of masks
around the tRNA channel and factor-binding sites. When perform-
ing 3D classification with RELION using a body mask around the full
ribosome, all classes produced structures in the A, P state, the most
abundant translational state (Supplementary Fig. 11a,b). In contrast,
cryoDRGN-ET recovered multiple translational statesin a single round
of training without the use of masks to focus on specific regions with
expected variability.

We additionally compared cryoDRGN-ET to a similar neural net-
work architecture, tomoDRGN, that has been proposed to model
heterogeneity in cryo-ET subtomograms®. This approach similarly
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extends the cryoDRGN framework and thus leverages the same expres-
sive neural field representation of density maps. However, tomoDRGN
accounts for electron dose exposure using a weighting factor rather
than a correction in its training objective and differs in its subtilt
encoding scheme. When using tomoDRGN with default parameters,
we did not observe tRNA or elongation factor heterogeneity in the
M. pneumoniae ribosome, with all resulting density maps in the A,
P state (Extended Data Fig. 10a). Additionally, tomoDRGN trained
with default parametersonthesS. cerevisiae FAS dataset shows artifac-
tual isosurface variation rather than conformational heterogeneity
between maps (Extended Data Fig. 10b). It is possible that alternate
parameterizations of this network may exhibit more heterogeneity
in these cases. Beyond performance on these datasets, we note that
cryoDRGN-ET isintegrated inthe cryoDRGN software and thusinherits
its features and improvements such as additional utilities for valida-
tion using voxel-based backprojection and efficient dataset loading to
enable processing large datasets (Methods).

Discussion

In summary, with cryoDRGN-ET we provide new capabilities for ana-
lyzing heterogeneity within cryo-ET subtomograms. CryoDRGN-ET
leverages the expressive representation power of deep neural networks
to generate density maps with compositional and conformational vari-
ation from cryo-ET subtomograms. When applied to in situ datasets,
we first characterized translational states of the bacterial ribosomein
quantitative agreement with previous results”. We then newly visual-
ized the native translational states of the S. cerevisiae ribosome, con-
firming the structural characterization from purified systems. Finally,
we used cryoDRGN-ET to characterize the structure and heterogeneity
of the S. cerevisiae FAS complex in situ. Notably, these S. cerevisiae
structures were determined from the same cryo-ET dataset, showcas-
ing a natural advantage of analyzing intact cells.

Instead of processing 3D subvolumes, cryoDRGN-ET operates on
2D tilt series of cropped particles (thatis, subtilts), a choice also made
by other recent approaches®'"**, Although averaging subtilt-series
dataenables more efficient computation, these subtilts include back-
ground fromthe cellular environment. This background could hinder
cryoDRGN-ET’s performance by reducing the SNR. However, with a
higher number of tiltsand larger box sizes, we expect that cryoDRGN-ET
is more likely to resolve some heterogeneity in neighboring particles
in the cellular environment. Interestingly, in the examples here, we
resolve structural heterogeneity using only a small subset of the col-
lected tiltimages (only the ten highest signalimages). This aligns with
prior observations thatinsome cases, itis possible to discard later tilt
images without losing useful signal*>*'. However, we do not assess the
necessity of these additional tilts in the processing steps upstream of
cryoDRGN-ET analysis.

We explored multiple hyperparameter choices for cryoDRGN-ET
training, for instance, varying training lengths, latent space dimension
and the number of tiltimages used. We expect that the best choices for
these parameters will vary between datasets depending on the number
of particles, SNRin tilt-seriesimages, the degree of heterogeneity and
other factors. Forinstance, whereas using more tiltimages per particle
improved resolution of polysomes and membrane density surrounding
the M. pneumoniae ribosome, we did not see this improvement when
analyzingthesS. cerevisiaeribosome, perhaps due to the larger number
of S. cerevisiaeribosome particles.

Notably, cryoDRGN-ET yields a distinct estimate of structural
heterogeneity for each particle (that is, a conformational state z;and
associated density map V;) without focused masks on smaller domains
to guide the search for heterogeneity during training. The relatively
unbiased, per-particle heterogeneity estimate from cryoDRGN-ET can
enable the joint analysis of inter-particle and intra-particle variation,
potentially disentangling complex relationships between particles’
conformational states, binding factor composition and spatial context.

As an example, our analysis of compositional and conformational
heterogeneity in the M. pneumoniaeribosome demonstrated that the
openingofthe L1stalk correlated withfactors presentinthe ribosome’s
tRNA channel.

We finally note that cryoDRGN-ET relies onimage poses obtained
from an upstream consensus refinement. While cryoDRGN-ET was
robust to minor errors in pose estimation for individual particles, we
found that larger pose deviations can limit resolved heterogeneity.
Combining particle selections from cryoDRGN-ET with pose refine-
mentin RELION could enable higher-resolution structure determina-
tion, asinthe case of the FAS structure. Inthe future, the development
of cryoDRGN-ET for subtomogram analysis can be coupled withrecent
developmentsin neural ab initio reconstruction*** to avoid reliance on
poses from consensus refinements. Such advances could enable studies
of structural heterogeneity in more complex systems, expanding our
understanding of dynamic macromolecular machinery within cells.
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Methods

CryoDRGN-ET generative model

CryoDRGN-ET performs heterogeneous reconstruction using a neural
network representation for cryo-EMsstructures. In particular, the central
task in cryoDRGN-ET is to learn a function v : R3*V — R describing an
N dimensional continuous distribution over 3D cryo-EM density maps.
We use a generic latent variable z € RY to model the conformational
distributionand parameterize the generative model with a coordinate-
based neural network, Vy(y(k), z), where 6 are parameters of a multi-layer
perceptron (MLP). In cryoDRGN-ET, the density map is specified in the
Fourier (or the closely related Hartley) domain; thus, k € R3are Cartesian
coordinates representing Fourier space wavevectors. Similar to recent
development in neural fields for modeling 3D signals®, input coordi-
nates k are expanded in a sinusoidal basis; instead of geometrically-
spaced axis-aligned frequenciesin earlier versions of cryoDRGN*’, we
use frequencies sampled from a Gaussian distribution:

y(k) = [cos(2mBK), sin(2mBK)]

where entries of B € RM*3 are sampled from (0, 0*) and Mis a hyper-
parameter. Without loss of generality, we model density maps from
Vyonthe domain[-0.5, 0.5]*in our coordinate-based neural network.
By default, we set 0 = 0.5 for our Fourier featurization and set M to be
the box size of the training images, that is, the number of pixels along
each dimension of the image.

The generation of cryo-ET subtomogram tilt images follows the
standard cryo-EM image formation model with modifications for
tomography. We note that many existing methods for subtomogram
averagingalign and average many subtomogram volumes of the same
particle. Alternatively, some newer approaches perform subtomo-
gram averaging by directly aligning and averaging the 2D tilt images
rather than the subvolumes*®, which avoids artifacts due to the missing
Fourier space wedge in individual subtomograms and can be more
memory efficient. In cryoDRGN-ET, we treat the subtomograms as
cropped 2D tilt series. Thus, the image formation of N tilted images
Xi(o"“”v) for particleiandtiltj closely follows that from single-particle
cryo-EM:

X,'(j) = CTF; Ty, S jlVo( 201 + €

where CTF;;applies the CTF, ¢ is additive Gaussian white noise, T,
appliesaphaseshift corresponding to translationby ¢ € R%inreal space,
and Sappliesa2Dslicing operator at orientation R € SO(3) onavolume
V:R3 >R

SV 2 (k) = V(R - (k)

Thus, to generate an image with our coordinate-based neural net-
work, we first obtain oriented 3D coordinates of the 2D central slice
corresponding to each pixel from the image, taking a grid of 3D pixel
coordinates originally spanning[-0.5, 0.5]*on the x-y plane and rotat-
ing by the pose of each tilt image. Then given these coordinates and
the latent embedding predicted for the particle, the volume decoder
Vycanrender a 2D slice in the Fourier (or Hartley) domain. The phase
shift corresponding to the 2D real-space translation is applied before
multiplying by the CTF.

Toaccount foraccumulated radiation damage in tomography, we
additionally extend the CTF to account for lower SNRin tilts collected
atlater time points and higher angles. First, weinclude an electron dose
exposure correction to account for frequency-dependent signal atten-
uation in later tilt images, as the sample has been exposed to higher
electron doses whenthesetilts are collected. As described previously?',
for each tilt image we compute this dose exposure correctionas e” *,
where Nis the cumulative dose accrued in the sample when this tilt
image was collected, and N, is the dose at which the SNR is 1/e of its

starting value. Based on previous calibration*, N, is computed as
2.81+0.245¢7%%%, dependent on spatial frequency s. These dose expo-
sure corrections are thenmasked to O for frequencies where the cumu-
lative dose exceeds the frequency-dependent optimal exposure value
(2.51284N.,)*"". We multiply the CTF by these dose exposure corrections
during training. Additionally, since sample thickness effectively
increases at higher tilt angles leading to decreasing SNR for these tilts,
we further multiply the CTF by the cosine of the tilt angle**. Our current
implementation assumes that dataare collected with a dose-symmetric
tilt scheme™,

CryoDRGN-ET training system

The overall cryoDRGN-ET architecture consists of animage encoder-
volume decoder based on the variational autoencoder®. The above
coordinate-based neural network V,serves as the probabilistic decoder.
Theimage encoder, g, embeds cryo-EMimage(s) associated with each
particleinto alower-dimensional latent representation. In cryoDRGN
for SPA, an MLP embeds a single image into an N-dimensional latent
vector. In cryoDRGN-ET for tilt-series data, the encoder aggregates
multipleimages of each particle from thettilt seriesinto asingle latent
vector. The encoder parameterizes a diagonal Gaussian approximate
posterior over the latent variable z, which we sample from during
training, but take the mean value during inference. To embed a series
oftiltimages, the encoder is splitinto two MLPs, where the first learns
an intermediate embedding of each image, and the second maps the
concatenation of the embeddings to the latent space. When experi-
menting with the number of tiltimages that are needed for representa-
tionlearning and reconstruction, tiltimages are ordered by exposure
so that the highest signal images are always included.

Thetraining objectiveis based onthe standard variational autoen-
coder objective consisting of a reconstruction error as the squared
error between the observedimage and arendered slice fromthe model
and a weighted regularization term on the predicted latent represen-
tation as the Kullback-Leibler divergence between the variational
posterior and a standard normal prior on z. Models are optimized
with stochastic gradient descent in minibatches of tilt images from
eight particles using the Adam optimizer*® with a learning rate of
0.0001. By default, the encoder and decoder MLPs have three hidden
layers of width 1,024 and ReLU activations. For the multi-view image
encoder, the intermediate embedding dimension for tilt images is
64 by default. We used an eight-dimensional latent variable in all
experiments. We used a constant weighting factor $ of 0.025 on the
Kullback-Leibler divergence term. For a summary of training and
architecture hyperparameters and runtimes in all computational
experiments, see Supplementary Table 2.

Computational enhancementsin cryoDRGN-ET

Starting in cryoDRGN software version 3.0, weimplemented new data-
set loading for memory-efficient training that can scale up to large
multi-million-image datasets. Cryo-ET datasets often consist of millions
oftilt-seriesimages, which aretoo large tofitinsystem memory. As min-
ibatch stochastic gradient descent requires random subsets of particle
images, cryoDRGN operates most efficiently when the entire dataset
canbeloaded into memory. Loading batches of images from diskina
randomorder induces IO bottlenecks since non-sequential reads from
(non-SSD) disk typically have overheads on the order of 10 ms per read.
This would impose a minimum epoch time of 4 x10°x10 x102=11h
for a4 million-image dataset.

In version 3.0, we introduce an in-memory ‘shuffle buffer’. The
dataloader fills this buffer with buffer_size elements, and thenateach
batch samples batch_size elements from the buffer, replacing them
with a random contiguous chunk from disk. We typically use a buffer
size 0of 32,000 images. This approach (a) avoids loading the full dataset
to memory, (b) loads data in contiguous chunks, reducing filesystem
overhead, and (c) achieves good shuffling of the data into batches.
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The shuffling approach is similar to the one implemented in
TensorFlow".

For a dataset of 4.4 million 128 x 128 images, the epoch time on
four A100 GPUs was 45 min using either an in-memory dataset or
shuffle-buffer loading from disk, compared to an epoch time of over
4 hwith naively loading images from disk in arandom order.

Voxel-based homogeneous reconstruction

To enable validation of particle selections, we implemented conven-
tional voxel-based backprojection to reconstruct density maps given
particles’ tiltimages and poses. We populate volume slices in Fourier
space withthe Fourier transform of eachimage based onits pose, apply-
ingthe CTF using the Wiener filter. The 3D reconstructionis computed
from the backprojected slices as previously described in**® as

S CTF(KF(K)

P = F7———
¥ CTR() + A

The optimal value of A, is 1/SNR(k), which can be estimated from
the data**. However, we found that this led to over-regularizationin the
absence of solvent masking, and we achieved acceptable results witha
constant regularization across frequencies equal to the average of the
unregularized denominator across voxels

N
A= Ep [Z CTF,-(k’)Z] )
i=1

As with cryoDRGN-ET training, we apply dose exposure and
tilt angle corrections to the CTF when carrying out voxel-based
backprojection.

FSCcalculation

To calculate FSC curves*’ between half-maps, we use a custom script
implemented in the cryoDRGN-ET software, with backprojected
maps from two random halves of the dataset. Before calculating FSC
curves, we apply soft real-space masks that were obtained as previ-
ously described®. In particular, masks are defined by first threshold-
ing the full dataset’s consensus density map at half of the 99.99th
percentile density value. The mask is then dilated by 25 A from the
original boundary, and a soft cosine edge is used to taper the mask to
0 at 15 A from the dilated boundary. To ensure that these soft masks
did not lead to artefacts, we computed corrected FSC curves using
maps with high-resolution noise substitution®® for the curves shown
in Extended Data Fig. 5, following the approach used in RELION*® and
cryoSPARC’'. Phase-randomization is carried out at frequencies above
80% of the 0.143 threshold value®®. We found that FSC curves corrected
with high-resolution noise substitution were nearly identical to uncor-
rected curves when using these soft masks; therefore, we show the
original FSC curves throughout the paper.

Bacterial ribosome dataset preprocessing (EMPIAR-10499)

Raw tilt movies were processed in Warp*, where motion correction
and patch CTF estimation were performed. The tilt-series stack was
generated from Warp and the tilt series were aligned using AreTomo™.
The tilt-series CTFs were estimated in Warp and tomograms were
reconstructed in Warp at a pixel size of 10 A, where the tomograms were
denoised to enhance the contrast for particle picking. Nine denoised
tomograms were manually pickedin crYOLO and used totrainacrYOLO
model*. Intotal, aninitial 32,253 particle locations were found, and the
subtomograms were extracted at a pixel size 10 A with abox size of 64
pixels. Approximately 500 subtomograms were extracted at10 A, and
aninitial model was generated using the VDAM algorithm in RELION
(v.4.0)°. Multiple rounds of 3D classification were performed using the
generated initial model to remove obvious bad particles, filtering the

dataset to 25,102 particles. These subtomograms were then extracted
in Warp at a pixel size of 5 A with a box size of 128 pixels. One more
round of 3D classification was performed, where 18,326 subtomograms
were selected and subjected to an initial alignment in RELION 4.0
3D-autorefine with a mask surrounding the large and small subunits.
These subtomograms were then extracted in Warp at 1.705 A, with a
box size 0f 294, where multi-particle refinement was performed in M*
with a binary mask encompassing the large and small subunits of the
ribosome. Global movement and rotationwitha5 x 5 x 41image-space
warping grid, a 8 x 8 x 2 x 10 volume-space warping grid and particle
pose trajectories with three temporal sampling points were refined
with five iterations. Starting at the third iteration, CTF parameters
were also refined, and at iteration 4, reference-based tilt-movie align-
mentwas performedin M. Thisresultedina3.6 A reconstruction of the
M. pneumoniae 70S ribosome.

Bacterial ribosome cryoDRGN-ET analysis

Particle filtering. In the initial analysis of this dataset, a standard
single-particle cryoDRGN model (software version 2.3.0) was trained
onthel8,6550-degreetiltimages (D =128,3.9 A/pix)*. The encoder and
decoder architectures had three hidden layers of width 256 (denoted
256 x 3),and the latent variable dimension was 8. The model was trained
for 50 epochs across four A100 GPUs, taking 13 min in total. Once
trained, cryoDRGN'’s analysis pipeline (‘cryodrgn analyze’) was used
tovisualize thelatent space and produce representative density maps.
Outliers were removed using cryoDRGN’s interactive lasso tool on the
UMAP visualization of the latent embeddings, leading to afiltered data-
set of 16,655 particles. A consensus refinement of the filtered dataset
yielded the same global resolution map.

Reconstruction with varying number of tilts. We carried out separate
voxel-based backprojections for the filtered dataset of 16,655 particles
whenusing1,2,5,8,10,16,32 and 41 tilts per particle. When using a sub-
set of tilts, tilts were chosen to be those with the lowest dose exposure
(collected earliest in the tilt series). Local resolution estimates were
performed in RELION (v4.0)**.

CryoDRGN-ET training. A cryoDRGN-ET model was trained on the
filtered dataset of 16,655 particles for 50 epochs taking3 hand 35 minon
one GPU, with the top ten tilts used during training (D = 128, 3.9 A/pix).
The encoder and decoder architectures were 1,024 x 3, and the latent
variable dimensionwas 8. We additionally trained acryoDRGN-ET model
with all 41 tilts per particle used during training (D =128, 3.9 A/pix)
taking 12 hand 55 min on one GPU, using the same filtered particle set
and architecture settings. To explore the effects of various hyperpa-
rameters on training, we additionally trained cryoDRGN-ET models
with latent variable dimensions 2, 4 and 16, and we further trained
cryoDRGN-ET models with encoder and decoder architectures 256 x 3
and 512 x 3.

CryoDRGN-ET ensemble analysis. After cryoDRGN-ET training, the
distribution of structures from each training run was systematically
sampled by using the ‘cryodrgn analyze’ pipeline with k=100, where
100 representative density maps are generated at k-means cluster
centers of the latentembeddings as described previously*’. These 100
density maps were then manually classified into four states based on
tRNA and elongation factor occupancy. As each of these 100 maps is
representative of a cluster of particles, we assign the particles in each
k-means cluster to the same class as its k-means cluster center. Addi-
tionally, all 100 density maps were classified into either L1open or L1
closed conformations. A representative structure of each state was
manually selected for visualizationin Fig. 2. Additional representative
density maps with membrane-bound ribosomes, polysomes and the
NTD of L7/L12 visible were selected from the 100 representative density
maps for the 41-tilt training run (Extended Data Fig. 4).
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High-resolution reconstruction and validation. To validate each
state, the particles corresponding to each selected cluster from
k-means clustering were combined. We then backprojected the tilt
images from the high-resolution dataset (D =294, 1.7 A/pix) using
‘cryodrgn backproject_voxel’. FSC curves between half-maps were
obtained as described above to assess resolution. High-resolution
backprojections were low-pass filtered to the resolution from FSC
curves for visualization.

Convergence analysis. We evaluated the convergence of cryoDRGN-ET
training across 50 epochs by monitoring the distribution of states and
inspecting the quality of sampled volumes from different training
epochs. For epochs 20, 30, 40 and 50, we independently classified
100 representative density maps into each of the four translational
states. We observed a consistent distribution of states after 30 epochs
oftraining (Supplementary Fig.1). Sampled volumes at 20, 30,40 and
50 epochs showed visibly similar resolution and included density
for key factors (for example, A, P tRNA). To assess map quality, we
computed map-to-model FSC curves between sampled volumes from
eachepochoftrainingand a previously determined insitu model of the
A, Pstate (PDB 7PHB)". Compared to epochs 10-20, sampled maps in
the A, Pstate from epochs 30-50 were more distant from this previously
solved structure, perhaps due to overfitting to noise in the dataset or
additional learned heterogeneity.

Effects of cryoDRGN-ET training hyperparameters. We evaluated
the distribution of translational states obtained when training with
different latent embedding dimension sizes (z =8 in Fig. 2). While
cryoDRGN-ET identified less heterogeneity and missed low-occupancy
translational states in runs with smaller latent embedding dimen-
sions (z=2 and z=4), similar heterogeneity was obtained with a
higher-dimension latent space (z= 8 and z=16; Supplementary Fig. 2).
It is possible that smaller latent space dimensions have insufficient
representational capacity to model low-population translational states.
We additionally evaluated the maps obtained from cryoDRGN-ET
training runs with different architecture sizes (256 x 3 for the encoder
and decoder architecture, and 512 x 3 for the encoder and decoder
architecture). Volumes sampled from these cryoDRGN-ET training runs
were qualitatively similar, but these smaller networks did not identify
the minor A*, P/E ribosome population.

Analyzing effects of pose errors. To evaluate the effects of inaccura-
cies in particle poses required as inputs by cryoDRGN-ET, we trained
cryoDRGN-ET models using poses from the consensus refinement
with random perturbations of either1°, 2, 3", 5 or 10". For each experi-
ment, we perturbed particles’ poses by a fixed amount at arandom
orientation, and the same perturbation was applied to all tilt images
for each particle. We analyzed homogeneous reconstructions and
representative volumes from training runs obtained when using each
set of perturbed poses. As expected, increasing rotational errors in
poses led to homogeneous reconstructions with worsening resolu-
tion (Supplementary Fig. 3a,b). At larger deviations, low-occupancy
translational states were not visible and more volumes were too
noisy to be classified into any of the translational states (Supplemen-
tary Fig. 3c-e). However, cryoDRGN-ET was robust to smaller pose
errors of I, producing similar heterogeneity and sampled densities
(Supplementary Fig. 3c,e,f).

3D classification benchmark

Benchmarking for 3D classification was performed with RELION (v3.1)*®,
analyzing subtomograms exported from the M software®*. These sub-
tomograms, derived froma3.6 A map obtained after refinement, had
abox size 0f 294 pixels and a pixel size 0f 1.7005 A. To compare against
cryoDRGN-ET, classification was conducted without alignment, using
the 3.6 A map and corresponding poses from M. The map underwent

alow-pass filter of 20 A and classification was performed with a soft
body mask, generating four classes per classification round. The regu-
larization parameter varied from1to 10, and the resolution of E-steps
was constrained between 5and 10. All classification rounds produced
mapsintheA, Pstate, and volumes fromarepresentative classification
round are shown in Supplementary Fig. 11.

We compared the computational cost of classification with RELION
withthe cost of training a cryoDRGN-ET model. One round of classifica-
tion at high resolution (D =294,1.7 A/pix) in RELION required 43.20 h
(5 MPIs, 8 threads). To compare runtime against cryoDRGN-ET at 2x
binning, we also carried out classifications in RELION without align-
ment onsubtomograms with aboxsize of 128 pixels at 3.9 A/pixel. For
these downsampled images (D =128, 3.9 A/pix), both cryoDRGN-ET
and RELION are substantially faster requiring 3.58 h for cryoDRGN-ET
(1GPU)and7.58 hfor RELION (4 MPIs, 8 threads; Supplementary Table 2).

TomoDRGN analysis

TomoDRGN models were trained using software version 0.2.2 on
the 70S ribosome and FAS complex subtomogram datasets. We
used architecture and training settings matching the experiments
reported in work by Powell et al.”, including additional flags for dose
exposure weighting, lattice masking, random tilt sampling and a
latent variable dimension of 128. Resulting latent embeddings and
volumes were analyzed using the same cryodrgn analyze pipeline.
Networks with default architecture settings of 256 x 3 were trained
for 50 epochs.

S. cerevisiae sample preparation

S. cerevisiae cells were grown in log phase conditions to an optical
density at 600 nm of 0.8. In total, 4 pl of the cells was applied to a
glow-discharged 200-mesh holey carbon grid copper grid (Quantifoil
R1.2/3) and vitrified inaliquid ethane using Vitrobot Mark IV (Thermo
Scientific) set at 4 °C and 100% humidity. The settings used were: blot
force,10; blot time, 10 s; waittime, 1s. Samples were stored under liquid
nitrogen until use. Grids were clipped in slotted Autogrids (Thermo
Fisher Scientific) and subjected to automated lamella preparation
using an Arctis cryo-plasma FIB (Thermo Fisher Scientific) with Auto-
TEM Cryo software (Thermo Fisher Scientific) as described elsewhere.
Before milling, grids were coated with alayer of ion-sputtered, metallic
platinum (Pt) for 30 s (Xe+,12 kV, 70 nA). This was followed by 400-nm
cryo-deposition of organometallic Pt using the gas injection system,
then an additional ion-sputtered platinum layer (Xe+, 12 kV, 70 nA,
120 s). Next, grids were surveyed using Maps software (Thermo Fisher
Scientific) for lamellasiteidentification followed by automated lamella
preparation using AutoTEM Cryo with a final thickness range set of
100-250 nm. Al FIB milling was performed using xenon. After the final
milling step, the lamellae were again sputter coated with a thin layer of
ion-sputtered metallic Pt (Xe+,12kV,30 nA, 8 s).

S. cerevisiae dataset acquisition

Datasets were collected using aKrios G4 equipped with XFEG, Selectris
Xenergy filter and Falcon 4 direct electron detector (Thermo Fisher Sci-
entific). Tilt series were collected with a dose-symmetric tilt scheme*°
using TEM Tomography 5software (Thermo Fisher Scientific). The tilt
spanof + 60°was used with 3°steps, starting at + 10° to compensate for
thelamella pre-tilt. The target focus was changed for each tilt-seriesin
steps of 0.25 pm over arange of 1.5 pmto —3.5 um. Data were acquired
in EER mode of Falcon 4 with a calibrated physical pixel size 0f 1.96 A
and a total dose of 3.5 e-/A? per tilt over ten frames. A 10-eV slit was
used for the entire data collection. Eucentric height estimation was
performed once for each lamella using the stage tilt method in TEM
Tomography 5software. Regions of interest were added manually, and
positions saved. Tracking and focusing were applied before and after
acquisition of each tilt step. The energy filter zero-loss peak was tuned
only once before starting the data acquisition.
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S. cerevisiae dataset preprocessing

Thedatawere preprocessed using TOMOgram MANager (TOMOMAN)*,
which calls the following external packages. EER images were motion
corrected using a modified implementation of RELION’s motion-
cor’®, The defocus was estimated using tiltCTF as implemented
within TOMOMAN (tiltCTF uses CTFFIND4 for some steps®). Tilt
series were aligned using fiducial-less alignment in AreTomo*’.
Initial tomograms without CTF correction were reconstructed
using IMOD’s tilt package’®® with IMOD reconstruction module in
TOMOMAN. The 3D CTF corrected tomograms at 8x binning were
reconstructed using novaCTF* module in TOMOMAN and used for
template matching.

S. cerevisiaeribosome subvolume averaging

Initial particle positions for 80S ribosomes were determined using
the noise correlation template matching approach implemented
in STOPGAP®°. PDB 6GQV (ref. 61 for 80S ribosomes was used to
generate a template using the simulate command in cisTEM®.
Approximately 1,000 particles per tomogram were picked from
260 tilt series. Subsequent subtomogram averaging and classifi-
cation were performed using STOPGAP®°. Then, 3D classification
was performed using simulated annealing stochastic hill climb-
ing multi-reference alignment'®*°, The resulting 130,000 particles
were then exported to Warp®® using TOMOMAN?®., Subtomograms
were reconstructed in RELION (v3.0)*® convention using Warp at
2x binning (3.92 A/pix). An iterative approach with subtomogram
alignment and additional 3D classification in RELION and tilt-series
refinement in M was performed. First, subvolumes were aligned in
RELION 3.1using aribosome-shaped mask. Aligned subvolumes were
then classified while only performing local search for alignment with
aribosome-shaped mask. This resulted in 119,000 particles that were
imported to M for multi-particle tilt-series refinement while solving
for sample deformations. For final averages, 119,000 particles were
reconstructed atan unbinned pixel size 0f1.96 A, and another round
of subtomogram alignment in RELION was performed with a mask
focused on the LSU. These particle positions were then imported
to M for multi-particle tilt-series refinement* to solve for sample
deformations and CTF. For the LSU focused reconstruction and the
subsequent analysis of the structural heterogeneity of the 80S ribo-
some, an additional round of subtomogram alignment in RELION
and subsequent tilt-series refinement in M were performed using
afocused mask around the LSU. This resulted in a 4.3 A reconstruc-
tion of the 80S ribosome. The final set 0of 119,000 particles was then
extracted as 2D subtilts at a binning of 1x and 2x using Warp, and
used for analyzing conformational heterogeneity with cryoDRGN-ET.

S. cerevisiaeribosome cryoDRGN-ET analysis

CryoDRGN-ET training: full dataset. A cryoDRGN-ET model was
trained on the full dataset of 119,031 particles for 50 epochs, with the
top ten tilts used during training (D =128, 3.92 A/pix). The architec-
tures of the two encoder MLPs and decoder MLP were 1,024 x 3, and
the latent variable dimension was 8. The model was trained for 26
epochs across four A100 GPUs, taking 10 h and 40 min total. Once
trained, cryoDRGN-ET’s analysis pipeline (‘cryodrgn analyze’) was
used to visualize the latent space and produce representative density
maps. We sampled both 20 structures for initial visualization and
100 density maps for a more comprehensive assessment. The UMAP
visualization of the latent space revealed three clusters of particles,
which were assigned as (1) outliers, (2) the SSU rotated particles and
(3) the SSU non-rotated particles by visual inspection of representa-
tive density maps from each cluster. Particles corresponding to each
cluster were selected using cryoDRGN-ET’sinteractive lasso tool on the
UMAP visualization of the latent embeddings. Ahomogeneous recon-
struction of each set of particles was then performed with ‘cryodrgn
backproject_voxel’ (Fig.3a).

Voxel-based reconstruction. We carried out voxel-based backprojec-
tions for the dataset of 93,281 SSU rotated and non-rotated particles
whenusing1,2,5,8,10,16 and 32 tilts per particle. We did not explore
using all 41tilts for these comparisons and further experiments on this
dataset, as many particles did not have all 41 tilt images available. We
additionally carried out voxel-based backprojections with all available
tilts per particle for both the full dataset of 119,031 particles and the
filtered set with 93,281 particles to assess the effects of particle filter-
ing. Asbefore, when using a subset of tilts, tilts were chosen to be those
with lowest dose exposure (collected earliest in the tilt series). Local
resolution estimates were made in RELION (v4.0)**.

CryoDRGN-ET training: hierarchical analysis. Three additional
cryoDRGN-ET models were trained on the remaining good particles
(93,281 particles; Fig. 3a), the SSU rotated state (62,624 particles)
and SSU non-rotated state (30,657 particles; Fig. 3b). All training runs
were carried out for 50 epochs, with latent variable dimension 8 and
encoder and decoder MLP dimensions 0f1,024 x 3. The training run on
all SSU rotated and non-rotated particles took 18 hand 36 min on one
A100 GPU, the training run on the SSU rotated particles alone took
12 h and 12 min on one A100 GPU, and the training run on the SSU
non-rotated particles alone took 6 h and 8 min on one A100 GPU.

CryoDRGN-ET ensemble analysis. After cryoDRGN-ET training, the
distribution of structures from each training run was systematically
sampled by using the ‘cryodrgn analyze’ pipeline with k=100, where
100 representative density maps were generated at k-means cluster
centers of the latent embeddings. For the two training runs that sepa-
rately processed SSU rotated particles and SSU non-rotated particles,
we classified all 100 representative density maps into corresponding
translational states. We searched density maps for the presence of fac-
torsseen previouslyininsitu eukaryotic ribosome datasetsincluding
the AtRNA, PtRNA, EtRNA, A/P tRNA, P/E tRNA, A/T tRNA, eEF2 and
eEF1A®”, More specifically, to classify density maps, we docked inribo-
some structures (PDB IDs: 3)7R ref. 64, S5LZS ref. 30, 6GQV ref. 61 and
6TNU ref. 65) thatincluded these tRNA and elongation factors, and we
theninspected mapstoidentify the presence of factors. Arepresenta-
tive structure for each state was manually selected for visualizationin
Fig. 3. We additionally identified all representative density maps that
included density for elF5A, as previous density was visible in the eIF5A
factor-binding sitein a prior insitu eukaryotic ribosome dataset'®. We
further pinpointed maps thatincluded eEF3 (an essential fungal elon-
gation factor®?), along with maps that included uL10 and the NTD of
PlandP2.Fromboth of these training runs, we additionally identified
representative density maps that included partial density for poly-
somes. Finally, from the training run that included both SSU rotated
and non-rotated particles together, we identified amembrane-bound
representative ribosome map.

High-resolution reconstruction and validation. To validate each
state, the particles corresponding to each selected cluster center from
k-means clustering were combined. We then backprojected the tilt
images from the high-resolution dataset (D = 256,1.96 A/pix) using ‘cry-
odrgnbackproject_voxel. We compute FSC curves between half-maps
to assess resolution. We apply areal-space mask to each volume before
computing the FSCvia‘cryodrgngen_mask’, generated by thresholding
a density map at half of its max density, dilating the mask by 25 A and
tapering the mask to 0 over 15 A from the dilated boundary via a soft
cosine edge. High-resolution backprojections were low-pass filtered
tothe FSC, 4, resolution for visualization.

To further validate translational states and the placement of
factors in these states, we fit individual factors into backprojected
volumes as rigid bodies and evaluated the match with surrounding
density. To color factorsin representative density maps and reconstruc-
tions (Fig. 3b), and to visualize the fit of individual factors in density
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(Fig. 3c), atomic models for each state were assembled by docking
into high-resolution reconstructions. For each translational state, we
obtained atomic models for the elongation factors and tRNAs sepa-
rately, along with separate atomic models for the LSU and SSU, and we
docked each of these models as rigid bodies into the high-resolution
reconstruction density maps with the ‘fitinmap~ tool in ChimeraX°®°.
For the eEF1A, A/T, P state, we obtained atomic models for eEF1A, the
A/T tRNA and the P tRNA from PDB 5LZS ref. 30 and the large subunit
(LSU) and SSU from PDB 3)78 ref. 67. For the A, P state, the A tRNA,
P tRNA, LSU and SSU were obtained from PDB 6 TNU ref. 65. For the
post-translocationstates, the eEF2, EtRNA, LSU and SSU were obtained
from PDB 6GQV ref. 61, and the P tRNA was obtained from PDB 6 TNU
ref. 65. For fitting in an atomic model for elF5A, we used elF5A model
from PDB 5LZS ref. 30. For fitting in an atomic model for eEF3, we used
the eEF3 model from PDB 7B7D ref. 32.

Toobserve SSU rotation in Extended Data Fig. 7, we fit atomic mod-
elsforthe SSU head, SSUbody and LSU separately into high-resolution
reconstructions for eachvisualized translation state. These threerigid
bodies were obtained from an atomic model of the S. cerevisiae ribo-
some with the SSUina non-rotated state (PDB 3)78)%. After these three
rigid bodies were sequentially fitinto each density map in ChimeraX°®,
the resulting atomic models were aligned with PDB 3)78 on the large
subunitto visualize SSU rotation and rolling. To visualize the SSU head
swivel, models containing the SSU head and body alone were aligned
onthe SSU body.

S. cerevisiae FAS subvolume averaging

Initial particle positions for FAS were determined using the noise cor-
relation template matching approach implemented in STOPGAP®.
PDB 6TAl (ref. 68) for FAS ribosomes was used to generate a template
using the simulate command in cisTEM®. Approximately 200 particles
per tomogram were picked from 260 tilt series. Subsequent subtomo-
gram averaging and classification were performed using STOPGAP®’.
3D classification was performed using simulated annealing stochas-
tic hill climbing multi-reference alignment®. The resulting 33,492
particles were then exported to the Warp®’, RELION, M pipeline using
TOMOMAN>,

Subvolumes were reconstructed and aligned using Warp and
RELION 3D-autorefine, first with a 64-pixel box size and 7.84 A per pixel
followed by further refinement with a 128-pixel box and 3.92 A pixel
size. The particles were then subjected to multi-particle refinement
in M for two iterations using a 3 x 3 image warp gridand 3 x3 x2 x 10
volume warp grid. Defocus and movie frame alignment were refined
only in the second iteration. The refined particles were exported as
both reconstructed subvolumes and aligned image series with a box
size of 300 pixels at 1.96 A per pixel.

S. cerevisiae FAS cryoDRGN-ET analysis

For cryoDRGN-ET heterogeneity analysis, subtilts were Fourier cropped
toaboxsize of 96 pixels resultingina pixel size of 6.13 A. AcryoDRGN-ET
model was trained using the first ten tilts for the full dataset of 33,492
particles. Training for 50 epochs using an eight-dimensional latent
variable model was completedin3 hand 50 minonasingle A100 GPU.

After training, the ‘cryoDRGN analyze’ pipeline was used to per-
form k-means clustering of the latent embeddings with k=20 and
visualize representative density maps at the cluster centers. Particles
were assessed based on the manualinspection of k-means centers maps
and selected using cryoDRGN’s interactive lasso tool on the UMAP
visualization of the latent embeddings. Particle indices were then used
to filter the 3D subvolume star file yielding a subset of 5,239 selected
‘good’ particles and 28,253 unselected ‘bad’ particles.

Subvolumes with a box size of 300 pixels and 1.96 A pixel size cor-
responding to the cryoDRGN-ET selected and unselected subsets were
subjected to RELION 3D autorefine, producingareconstruction witha
global resolution of 8.8 A estimated by RELION after processing without

imposing symmetry. Particles from the refinement were thenimported
into Mand exported as subtilts with abox size of 300 at 1.96 A/pix. The
subtilts were downsampled to abox size of 128 and a pixel size of 4.6 A
for a final round of cryoDRGN heterogeneity analysis using the same
training parameters as previously described (Supplementary Table 2).

S. cerevisiae FAS subvolume classification

Subvolume 3D classification on the full FAS dataset was performed
in RELION after exporting subvolumes from M using the same pose
information, box size and pixel size as the subtilts used for initial
cryoDRGN-ET training (D =96, 6.15 A/pix). A volume reconstructed
from the downsampled particles from M was low-pass filtered to 30 A
for theinitial reference and mask generation. RELION 3D classification
was performed with K =3, T=2toidentify asubset of 4,633 particles.

Tomogram visualization

Deconvolved tomograms were constructed in Warp with a pixel size of
15.68 A. Particle indices identified by cryoDRGN-ET analysis were used
to filter the associated 3D subvolume star for membrane-associated
ribosomes, selected ribosome particles (rotated and non-rotated SSU)
and filtered FAS particles. Particle mapping and tomogram visualiza-
tion was carried out using the plugin ArtiaX in ChimeraX®*. Membrane
surface density was generated using Membrain-Seg® and Segger™.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

S. cerevisiaeraw data have been deposited to EMPIAR-11658. Maps have
been deposited to the Electron Microscopy Data Bank (EMD-18197,
EMD-18231, EMD-18232, EMD-45235 and EMD-45236) and cryoDRGN
model weights, density maps and any associated files needed to repro-
ducethisanalysis are available on Zenodo via https://doi.org/10.5281/
zenodo.11399378 (ref. 71). Atomic models used from previous studies
were obtained from the PDB (7PHA, 7PHB, 7PHC, 7PH9, 3J7R, 5LZS,
6GQV, 6TNU, 3)78, 7B7D, 6TA1, 6QL5 and 6QL6). The dataset from
EMPIAR-10499 was analyzed in this study.

Code availability
Software is available at https://github.com/ml-struct-bio/cryodrgn/
inversion 3.0.0-beta.
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Extended Data Fig. 1| Latent space-based filtering of the M. pneumoniae components (PCs), showing representative density maps for the highlighted
bacterial ribosome subtomograms. a. UMAP visualization of cryoDRGN’s latent  traversal across PC1. c. UMAP visualization of the latent space for the same
space representation from a training run using all particles (D=128, 3.9 A/pixel), cryoDRGN training run colored by PC1using the same coloring asinb) (left), and
showing example particle images for the highlighted group of outlier particles. colored by a particle selection that excludes outlier particles (right).

b. Visualization of the latent space along the first and second principal
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Extended Data Fig. 2| Homogeneous reconstruction of the M. pneumoniae 41tilts per particle, with maps obtained through voxel-based backprojection
ribosome varying the number of tiltimages (D=294, 1.7 A /pixel). a. Local incryoDRGN-ET. b. FSC curves between half-maps for varying numbers of tilts

resolution estimated from RELION 4.0 for reconstructions using 1tilt, 8 tilt, and per particle.
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Extended Data Fig. 3| SSU rotation of the M. pneumoniae ribosome identified
incryoDRGN-ET. a, b. In the left column is the UMAP visualization of the latent
space from cryoDRGN-ET training on the filtered particle set, with a heatmap
overlaid depicting the distribution of particlesin a. the A, P state, and b. the

SSU non-rotated

SSU rotation

A*, P/E state. In the middle column are density maps obtained by voxel-based
backprojection of particles (D=294, 1.7 A/pixel) from these two states low-pass
filtered to 10 A resolution. c. These two reconstructions are overlaid and viewed
facing the SSU to depict SSU rotation.
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Extended DataFig. 4 | Additional states of the M. pneumoniae ribosome for representative density maps are highlighted. b. Representative maps with
identified in cryoDRGN-ET. a. UMAP visualization of the latent space from (left) and without (right) density present for the NTD of L7/L12, as highlighted by
cryoDRGN-ET training (D=128, 3.9 A/pixel) on the M. pneumoniae ribosome the red asterisk. c. Representative map depicting amembrane-bound ribosome.

filtered particle set, using 41 tilts per particle during training. Latent embeddings d. Representative map depicting polysome density.
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Extended Data Fig. 5| Homogeneous reconstruction of the S. cerevisiae incryoDRGN. b. FSC curves between half-maps for varying numbers of tilts per
ribosome varying the number of tiltimages (D=256,1.96 A /pixel). a. Local particles. c. FSC curves for either the full particle set (119,031 particles) or the

resolution estimated from RELION 4.0 for reconstructions using 1 tilt, 8 tilt, and filtered particle set (93,281 particles) using all tilts per particle.
32tilts per particle, with maps obtained through voxel-based backprojection
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Extended Data Fig. 6| Homogeneous reconstruction of translational states
ofthe S. cerevisiaeribosome identified in cryoDRGN-ET in the eEF1A, A/T,
Pstate. a. The left panel shows the UMAP visualization of the latent space from
cryoDRGN-ET training on the indicated particle set, with overlaid heatmaps
highlighting particles belonging to each state. The right column depicts the
homogeneous reconstruction (D=256,1.96 A/pixel) from cryoDRGN-ET’s voxel-
based backprojection for particles selected in each state. Reconstructions are
low-pass filtered to the FSC resolution and colored by corresponding factors.
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b.Superposition of the PtRNA, A/T tRNA, and eEF1A from this state vs the codon
recognition state (cyan) from PDB ID: SLZS ref. 30. The PtRNA, A/T tRNA, and
eEF1A were separately docked into the reconstruction froma) for comparison
to the codonrecognition state. Density is shown from the reconstruction in a)
around these factors. Arrows indicate the shift in position of the A/T tRNA and
eEF1A between the codon sampling and codon recognition states. c. FSC curves
bewteen half-maps for the eEF1A, A/T, P state.
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Extended Data Fig. 7 | Conformational motions of the S. cerevisiae ribosome
SSUidentified in cryoDRGN-ET in the following states: a. the eEF1A, A/T, P
state; b. the A, Pstate; c. the eEF2, P, Estate; and d. the eEF2, Pstate. Inall
panels, the non-rotated S. cerevisiae ribosome structure in PDBID 3)78 ref. 68 is
shownin grey, and docked models into high-resolution reconstructions from
cryoDRGN-ET are shown in green. The left column shows the rotation of the
SSU, with models aligned on the LSU (LSU not shown for clarity) and red arrows
indicating rotations. The middle column shows rolling of the SSU, again with
models aligned on the LSU and red arrows indicating rolling. Finally, the right
column shows the SSU head swivel, with models aligned on the SSU body

SSU head swivel

SSU rolling

Swivel ~1.7°

(LSU removed and not shown), and red arrows indicating cases where a minor
head swivel is present. Rotations angles between docked models and coordinates
from PDBID 378 ref. 68 are measured in ChimeraX®. For each state we report
two rotation angles. The angle representing either ‘SSU rotation’ or ‘SSU rolling
and rotation’ is measured as the rotation angle required to superimpose the
state’s SSU onto the SSU of PDB 3J78, when structures aligned on the LSU. The
angle representing the head swivel is measured as the rotation angle required

to superimpose the SSU head between that state and PDB ID 3)78, when the SSU
structures are aligned on the SSU body.
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Extended Data Fig. 8| Structures of polysomes, eIF5A, uL10 and NTD-P1/P2, maps from cryoDRGN-ET are shown depicting ribosomes with and without

and eEF3identified in cryoDRGN-ET analysis of the S. cerevisiae ribosome elF5A (top row) and with polysome density (bottom row). In the right column
froma. SSUrotated and b. SSU non-rotated particles. In the left column, of b), representative maps from cryoDRGN-ET are shown depicting ribosomes
UMAP visualization of the latent space from cryoDRGN-ET training (D=128, 3.92 with and without uL10(P1-P2), density (top row), with and without eEF3 density
A/pixel) ontheindicated particle set. Latent embeddings for representative (middle row), and with polysome density (bottom row). Atomic models for eIF5A
density maps are highlighted. In the right column of a), representative density and eEF3 are shown in density from the cryoDRGN-ET representative map.
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Extended DataFig. 9 | S. cerevisiae fatty acid synthase classification and with best fitting atomic model (non-rotated state). Middle: FAS map at low
atomic models fit in maps. a. Maps and particle counts from RELION 3D threshold showing density for ACP (red) in the non-rotated state. Right: FAS map
classification (3 classes). The map from the best quality particles is shown in atlow threshold missing density for ACP (orange) in the rotated state. c. Sampled
magenta.b. D3 symmetry RELION refinement of 5,239 high quality particles volumes from the extremes of a scan along PC1 of the latent space (left) with best
selected by cryoDRGN-ET (Fig. 4) with a fit atomic models for the non-rotated fitting atomic models (non-rotated PDB ID: 6QL6 ref. 36 inblue; rotated PDBID:
(blue, PDBID: 6QL6) and rotated (green, PDBID: 6QL5) states™. Left: FAS map 6QL5ref.36ingreen).
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Extended Data Fig. 10 | TomoDRGN* performance on M. pneumoniae
ribosome and . cerevisiae fatty acid synthase particles. a. 20 representative
sampled volumes across the latent space (black dots in UMAP representation,
left) are allin the A, P state (right). b. Sampled volumes (right) across PC1 of

the latent space (left) show isosurface changes rather than conformational
heterogeneity. Maps are generated from points in the latent space depicted with
corresponding colors.
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